Developmental effects of Malathion exposure on locomotor activity and anxiety-like behavior in Wistar rat

Abstract

Developmental exposure to organophosphate insecticide is well known to induce neurobeha-vioral impairments, at late period. The present study aims to investigate the effects of chronic exposure to Malathion, from in utero to young adult stage, on locomotor skills and anxiety like- behavior among wistar rat. Four groups of female rats, bred with one non-pesticide exposed male, are used. On gestational day 6, three groups receive daily, by intragastric gavage, 3 different doses of Malathion dissolved in corn oil (100, 200 and 300 mg/kg body weight). The control group receives the corn oil only. On postnatal day 21, weaned offsprings are submitted to the similar treatment until adult age. Spontaneous locomotor activity is evaluated using the Open-Field test (OF) and anxiety-like behavior is measured using both Open-Field (OF) test and Elevate Plus-Maze (EPM). Malathion at 300 mg/kg is toxic to pregnant dams, and pups are stillborns. In males, Malathionlevelat 100 and 200 mg/kg induced significant impairment of spontaneous locomotor activities, which is reflected by high decrease of number of squares crossed in OF. In contrast, no discernible changes are observed within females Malathion-treated-group. However, females exposed to both malathion levels develop further anxiety-like response, expressed by significant reductions of exploratory activities in OF and time spent in open arm of EPM. Neurochemistry assay shows that cerebellum and neocortex acetylcholinesterase (AChE) activity inhibition are significantly increased with neurobehavioral deficits in males, relative to females. Overall, neurobehavioral outcomes of current study reveal that developmental exposure to Malathion induces sex-selective effects with greater changes in females.

Share and Cite:

N’Go, P. , Azzaoui, F. , Ahami, A. , Soro, P. , Najimi, M. and Chigr, F. (2013) Developmental effects of Malathion exposure on locomotor activity and anxiety-like behavior in Wistar rat. Health, 5, 603-611. doi: 10.4236/health.2013.53A080.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Dallegrave, E., Mantese, F.D., Oliveira, R.T., Andrade, A.J.M., Dalsenter, P.R. and Langeloh, A. (2007) Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Archives of Toxicology, 81, 665-673. doi:10.1007/s00204-006-0170-5
[2] Yen, J.H., Lin, K.H. and Wang, Y.S. (2000) Potential of the insecticides acephate and methamidophos to contaminate groundwater. Ecotoxicology and Environmental Safety, 45, 79-86. doi:10.1006/eesa.1999.1846
[3] Baldi, I., Brochard, P., Mohammed-Brahim, B., Rolland, P. and Salamon, R. (1999) Méthodes d’estimation rétrospective de l’exposition professionnelle aux pesticides. Revue d’Epidémiologie et de Santé Publique, 47, 165-174.
[4] Maroni, M., Colosio, C., Ferioli, A. and Fait, A. (2000) Biological monitoring of pesticide exposure: A review. Toxicology, 7, 1-118.
[5] Hazarika, A., Sarkar, S.N., Hajare, S., Kataria, M. and Malik, J.K. (2003) Infuence of malathion pretreatment on the toxicity of anilofos in male rats: A biochemical interaction study. Toxicology, 185, 1-8. doi:10.1016/S0300-483X(02)00574-7
[6] Wang, L.M., Ye, W.H., Zhou, S.S., Lin, K.D., Zhao, M.R. and Liu, W.P. (2009) Acute and chronic toxicity of organophosphate monocrotophos to Daphnia magna. Journal of Environmental Science and Health, Part B, 44, 38- 43.
[7] Kwong, T.C. (2002) Organophosphate pesticides: Biochemistry and clinical toxicology. Therapeutic Drug Monitoring, 24, 144-149. doi:10.1097/00007691-200202000-00022
[8] Brenner, L. (1992) Malathion. Journal of Pesticide Reform, 12, 29.
[9] Grether, J.K., Harris, J.A., Neutra, R., et al. (1987) Exposure to aerial malathion application and the occurrence of congenital anomalies and low birthweight. American Journal of Public Health, 77, 1009-1010. doi:10.2105/AJPH.77.8.1009
[10] Engel, A.G., Lambert, E.H. and Santa, T. (1973) Neurology (Minneap.) 23, 1273-1281.
[11] Uzun, F.G., Kalender, S., Durak, D., Demir, F. and Kal- ender, Y. (2009) Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food and Chemical Toxicology, 47, 1903-1908. doi:10.1016/j.fct.2009.05.001
[12] Abdollahi, M., Donyavi, M., Pournourmohammadi, Sh. and Saadat, M. (2004) Hyperglycemia associated with increased hepatic glycogen phosphorylase and phosphoe- nolpyruvatecarboxykinase activities in rats following subchronic exposure to Malathion. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 137, 343-347. doi:10.1016/j.cca.2004.03.009
[13] Abou-Donia, M.B. (2003) Organophosphorus ester-induced chronic neurotoxicity. Archives of Environmental Health, 58, 484-497. doi:10.3200/AEOH.58.8.484-497
[14] Stallones, L. and Beseler, C. (2002) Pesticide illness, farm practices, and neuro-logical symptoms among farm residents in Colorado. Environmental Research, 90, 89- 97. doi:10.1006/enrs.2002.4398
[15] Salvi, R.S., Lara, D.R., Ghisol, E.S., Portela, L.V., Dias, R.D. and Souza, D.O. (2003) Neuropsychiatric evaluation in subjects chronically exposed to organophosphate. Toxicological Sciences, 72, 267. doi:10.1093/toxsci/kfg034
[16] Ruckart, P.Z., Kakolewski, K., Bove, F.J. and Kaye, W.E. (2004) Long-term neurobehavioral health effects of methyl parathion exposure in children in Mississippi and Ohio. Environmental Health Perspectives, 112, 46-51. doi:10.1289/ehp.6430
[17] Slotkin, T.A. (1999) Developmental cholinotoxicants: Nicotine and chlorpyrifos. Environ. Environmental Health Perspectives, 107, 71-80.
[18] Andersen, S.L. (2003) Trajectories of brain development: Point of vulnerability or window of opportunity. Neuro-science & Biobehavioral Reviews, 27, 3-18. doi:10.1016/S0149-7634(03)00005-8
[19] Ramos, Z.R., Fortunato, J.J., Agostinho, F.R., Martins, M.R., Correa, M., Schetinger, M.R., Dal-Pizzol, F. and Quevedo, J. (2006) Infuence of malathion on acetylcholinesterase activity in rats submitted to a forced swimming test. Neurotoxicity Research, 9, 285-290. doi:10.1007/BF03033318
[20] Acker, C.I., Souza, A.C., Pinton, S., da Rocha, J.T., Friggi, C.A., Zanella, R. and Nogueira C.W. (2011) Repeated Malathion exposure induces behavioral impairment and AChE activity inhibition in brains of rat pups. Ecotoxicology and Environmental Safety, 74, 2310-2315. doi:10.1016/j.ecoenv.2011.07.035
[21] Slotkin, T.A., Cousins, M.M., Tate, C.A. and Seidler, F.J. (2001) Persistent cholinergic presynaptic deficits after neo-natal chlorpyrifos exposure. Brain Research, 902, 229- 243. doi:10.1016/S0006-8993(01)02387-3
[22] Slotkin, T.A., Bodwell, B.E., Levin, E.D. and Seidler, F.J. (2008) Neonatal exposure to low doses of diazinon: Longterm effects on neural cell development and acetylcholine systems. Environmental Health Perspectives, 116, 340- 348. doi:10.1289/ehp.11005
[23] Lal, C.S., Kumar, V., Ranjan, A., Das, V.N., Kumar, N., Kishore, K. and Bhattacharya, S.K. (2004) Evaluation of cholinesterase level in an endemic population exposed to Malathion suspension formulation as a vector control measure. Memórias do Instituto Oswaldo Cruz, 99, 219. doi:10.1590/S0074-02762004000200018
[24] Lee, P. and Tai, D.Y. (2001) Clinical features of patients with acute organo-phosphate poisoning requiring intensive care. Intensive Care Medicine, 27, 694. doi:10.1007/s001340100895
[25] Azzaoui, F.Z., Ahami A.O.T. and Khadmaoui A. (2008) Impact of aluminum sub-chronic toxicity on body weight and recognition memory of wistar rat. Pakistan Journal of Biological Sciences, 11, 1830-1834. doi:10.3923/pjbs.2008.1830.1834
[26] Azzaoui, F.Z., Ahami A.O.T. and Khadmaoui A. (2009) Impact of lead sub-chronic toxicity on recognition memory and motor activity of Wistar rat. Pak. Pakistan Journal of Biological Sciences, 12, 173-177. doi:10.3923/pjbs.2009.173.177
[27] Carobrez, A.P. andBertoglio, L.J. (2005) Ethological and temporal analyses of anxiety) like ehavior: Elevated plusmaze model 20 years on. Neuroscience & Biobehavioral Reviews, 29, 1193-1205. doi:10.1016/j.neubiorev.2005.04.017
[28] Ellman, G.L., Courtney, K.D., Andres, V.R.M. and Featherstone, R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95. doi:10.1016/0006-2952(61)90145-9
[29] Azzaoui, F.-Z., Hami, H., El-Hioui, M., Boulbaroud, S. and Ahami, A. (2012) Attempt at the determination of aluminum nitrate LD50 and the study of its neurotoxin-cological effect in Wistar rat. Biology and Medicine, 4, 89-94
[30] Lim, K.L., Tay, A., Nadarajah, V.D. and Mitra, N.K. (2011) The effect of consequent exposure of stress and dermal application of low doses of chlorpyrifos on the expression of glial fibrillary acidic protein in the hippocampus of adult mice. Journal of Occupational Medicine and Toxicology, 6, 4.
[31] Jones, A.L. and Karalliedde, L. (2006) Poisoning. In: Boon, N.A., Colledge, N.R., Davidson, S.S. and Walker, B.R., Eds., Davidson’s Principles and Practice of Medicine, 20th Edition, Churchill Livingstone, Edinburgh, 203-226.
[32] Prut, L. and Belzung, C. (2003) The open celd as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. European Journal of Pharmacology, 463, 3-33. doi:10.1016/S0014-2999(03)01272-X
[33] Icenogle, L.M., Christopher, N.C., Blackwelder, W.P., Cald- well, D.P., Qiao, D., Seidler, F.J., Slotkin, T.A. and Levin, E.D. (2004) Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicology and Teratology, 26, 95-101. doi:10.1016/j.ntt.2003.09.001
[34] Rice, D. and Barone Jr., S. (2000) Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental Health Perspectives, 108, 511-533.
[35] Costa, L.G., Aschner, M., Vitalone, A., Syversen, T. and Soldin, O.P. (2004) Developmental neuropathology of environmental agents. Annual Review of Pharmacology and Toxicology, 44, 87-110. doi:10.1146/annurev.pharmtox.44.101802.121424
[36] Eskenazi, B., Bradman, A. and Castorina, R. (1999) Exposures of children to organophosphate pesticides and their potential adverse health effects. Environmental Health Perspectives, 107, 409-419. doi:10.1289/ehp.99107s3409
[37] Assini, F.L., Zanette, K.D., Brocardo, P.S., Pandolfo, P., Rodrigues, A.L. and Takahashi, R.N. (2005) Behavioral effects and ChE measures after acute and repeated administration of malathion in rats. Environmental Toxicology and Pharmacology, 20, 443-449. doi:10.1016/j.etap.2005.05.007
[38] Hohmann, C.F. (2003) A morphogenetic role for acetylcholine in mouse cerebral neocortex. Neuroscience & Biobehavioral Reviews, 27, 351-363. doi:10.1016/S0149-7634(03)00066-6
[39] Aldridge, J.E., Meyer, A., Seidler, F.J. and Slotkin, T.A. (2005) Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environmental Health Perspectives, 113, 1027-1031. doi:10.1289/ehp.7968
[40] Cory-Slechta, D.A. (1995) Relationships between lead-induced learning impairment and changes in dopaminergic, cholinergic and glutamatergic neu-rotransmitter system function. Annual Review of Pharmacology and Toxicology, 35, 391-415. doi:10.1146/annurev.pa.35.040195.002135
[41] Dawson, G.R. and Tricklebank, M.D. (1995) Use of the elevated plus-maze in the search for novel anxiolytic agents. Trends in Pharmacological Sciences, 16-33.
[42] Eskenazi, B., Rosas, L.G., Marks, A.R., Bradman, A., Harley, K., Holland, N., Johnson, C., Fenster, L. and Barr, D.B. (2008) Pesticide toxicity and the developing brain. Basic & Clinical Pharmacology & Toxicology, 102, 228-236. doi:10.1111/j.1742-7843.2007.00171.x
[43] Valvassori, S.S., Fortunato, J.J., Gomes, K.M., Réus, G.Z., Martins, M.R., Gavioli, E.C., Schetinger, M.R., Dal-Pizzol, F. and Quevedo, J. (2007) Acute and subacute exposure to malathion impairs aversive but not non-associative memory in rats. Neurotoxicity Research, 12, 71-79. doi:10.1007/BF03033902
[44] Aldridge, J.E., Levin, E.D., Seidler, F.J. and Slotkin, T.A. (2005) Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environmental Health Perspectives, 113, 527-531. doi:10.1289/ehp.7867
[45] Ricceri, L., Venerosi, A., Capone, F., Cometa, M.F., Lo- renzini, P., Fortuna, S. and Calamandrei, G. (2006) Developmental neurotoxicity of organophosphorus pesticides: Fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicological Sciences, 93, 105-113. doi:10.1093/toxsci/kfl032
[46] Johnson, T.N. (2003) The development of drug metabolising enzymes and their influence on the susceptibility to adverse drug reactions in children. Toxicology, 192, 37-48. doi:10.1016/S0300-483X(03)00249-X
[47] Ouagazzal, A.M., Kenny, P.J. and File, S.E. (1999) Modulation of behavior on trials 1 and 2 in the elevated plusmaze test of anxiety after systemic and hippocampus administration of nicotine. Psychopharmacology, 144, 54- 60. doi:10.1007/s002130050976
[48] File, S.E., Gonzalez, L.E. and Andrews, N. (1998) Endogenous acetylcholine in the dorsal hippocampus reduces anxiety through actions on nicotinic and muscarinic1 receptors. Behavioral Neuroscience, 112, 352-359. doi:10.1037/0735-7044.112.2.352
[49] Slotkin, T.A., Tate, C.A., Ryde, I.T., Levin, E.D. and Seidler, F.J. (2006) Organo-phosphate insecticides target the serotonergic system in developing rat brain regions: Disparate effects of diazinon and para-thion at doses spanning the threshold for cholinesterase inhibition. Environmental Health Perspectives, 114, 1542-1546. doi:10.1289/ehp.9337

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.