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ABSTRACT 

In order to use effectively renewable energy sources, we propose a new system, called Advanced Superconducting 
Power Conditioning System (ASPCS) that is composed of Superconducting Magnetic Energy Storage (SMES), Fuel 
Cell-Electrolyzer (FC-EL), hydrogen storage and DC/DC and DC/AC converters in connection with a liquid hydrogen 
station for fuel cell vehicles. The ASPCS compensates the fluctuating electric power of renewable energy sources such 
as wind and photovoltaic power generations by means of the SMES having characteristics of quick response and large 
Input-Output power, and hydrogen energy with FC-EL having characteristics of moderate response and large storage 
capacity. The moderate fluctuated power of the renewable energy is compensated by a trend forecasting method with 
the Artificial Neural Network. In case of excess of the power generation by the renewable energy to demand it is con-
verted to hydrogen with EL. In contrast, shortage of the electric power is made up with FC. The faster fluctuation power 
that cannot be compensated by the forecasting method is effectively compensated by SMES. In the ASPCS, the SMES 
coil with an MgB2 conductor is operated at 20 K by using liquid hydrogen supplied from a liquid hydrogen tank of the 
fuel cell vehicle station. The necessary storage capacity of SMES is estimated as 50 MJ to 100 MJ depending on the 
forecasting time for compensating fluctuation power of the rated wind power generation of 5.0 MW. As a safety case, a 
thermo-siphon cooling system is used to cool indirectly the MgB2 SMES coil by thermal conduction. In this paper, a 
trend forecasting result of output power of a wind power generation and the estimated storage capacity of SMES are 
reported. 
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1. Introduction 

The applications of renewable energy are needed in the 
context of climate change and energy resource. But, 
when renewable energy generations, such as wind and 
photovoltaic power generations, affected by weather 
condition are introduced in large quantities, an existing 
power system may become unstable. Therefore, we pro-
pose a new system shown in Figure 1, called Advanced 
Superconducting Power Conditioning System (ASPCS) 
that is composed of Superconducting Magnetic Energy 
Storage (SMES), Fuel Cell-Electrolyzer (FC-EL), hy-
drogen storage and DC/DC and DC/AC converters in 
connection with a liquid hydrogen station for fuel cell 
vehicles [1-3]. 
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Figure 1. Advanced Superconducting Power Conditioning 
System. 
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The ASPCS compensates the fast fluctuating electric 
power of the renewable energy sources by means of the 
SMES having characteristics of quick response and large 
Input-Output power, and hydrogen energy with FC-EL 
having characteristics of moderate response and large 
storage capacity. The moderate fluctuated power of the 
renewable energy is compensated by a trend forecasting 
with the Artificial Neural Network (ANN) [4, 5]. In case 
of excess of the power generation by the renewable en-
ergy to demand it is converted to hydrogen with EL. In 
contrast, in case of shortage the electric power is made 
up with FC. The faster fluctuation that cannot be com-
pensated by the forecasting method is effectively com-
pensated by SMES. In the ASPCS, the SMES coil with 
an MgB2 conductor is operated at 20 K by using liquid 
hydrogen supplied from a liquid hydrogen tank of the 
fuel cell vehicle station. The necessary storage capacity 
of SMES is estimated as 50 MJ to 100 MJ depending on 
the forecasting time for compensating fluctuation of the 
rated wind power generation of 5.0 MW. As a safety, a 
thermo-siphon cooling system is used to cool indirectly 
the MgB2 SMES coil by thermal conduction. 

In this paper, a forecasting result of output power of a 
wind power generation and the necessary storage capac-
ity of SMES are reported. 

2. Artificial Neural Network 

ANN is a model of biological neural network, and is 
composed of a lot of artificial neurons that collect output 
signals through a transfer function of Equation (1) when 
they are received input signals. 
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The ANN shown in Figure 2 is a layered ANN. The 
layered ANN is formed three layers; an input layer that 
receives input signal, an output layer that produces out-
puts signals and a hidden layer that makes processes of 
signals. 

Weights are set in connection between neurons. The 
outputs of each neuron inputs into other neurons after  
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Figure 2. Layered ANN. 

they are multiplied by the weights. Since the weights are 
usually initialized with random values, they are adjusted 
to get desirable outputs. This is a learning process. A 
back propagation method that is one of the learning me-
thods of ANN is used in this paper. The ANN can find 
relations between input data and the output data easily by 
the learning process. 

3. K-means Method 

A k-means method is one of clustering methods to 
perform data classification [6, 7]. And the method classi-
fies given data into k clusters. The step of k-means me-
thod is as follows: 

(i)  Determine number k of the clusters. 
(ii) Assign clusters for the data at random. 
(iii) Calculate the center of each cluster with the 

assigned data. 
(iv) Calculate distances between the data and the 

cluster-centered, and assign the data to the nearest cluster 
again. 

(v) When the allotment of all data into the clusters 
does not change by the process mentioned above, the 
calculation is over. Otherwise, the above process is re-
peated after the cluster centers are recalculated from 
newly assigned clusters. 

4. Simulation 

4.1. Output Power Forecasting 

In this study, a wind power generation of rated output 5 
MW having time series data of the output power shown 
in Figure 3 is used. The future trend output is forecasted 
for 50 seconds needed for control of FC-EL by the ANN 
model shown in Figure 4. 

Let the output power time series of the wind power be 
{x1, x2, …, xn}. The ANN learns relation between xt, 
xt-10, …, xt -60 that are the output power at present time t to 
60 seconds before and xt+50 that is the output power at 50  
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Figure 3. Output power of a wind power generation. 
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seconds from the present time, and forecasts output pow-
er 50 seconds in future. The forecasting result by the 
ANN is shown in Figures 5, 6 and Table 1. Table 1 in-
cludes the result of moving average that is calculated by 
xt = (xt-10+ xt-20+ xt-30+ xt-40+ xt-50)/6 to compare with the 
result by the ANN. The ANN can forecast the output 
power of the wind power generation at 50 seconds in 
future, and it is shown that the result of the ANN is better 
than that of the moving average. 

4.2. The Necessary Storage Capacity of SMES 

When FC-EL is operated based on the forecast men-
tioned above, charging or discharging power by SMES 
compensates the difference between actual output power 
and the forecasted output power as shown in Figure 7. 
The required storage capacity of SMES shown in Table 
2 is determined by alternately charging or discharging 
power. In addition, distribution of the charging or dis-
charging power by SMES is shown in Figures 8 and 9. 
From the above result, the storage capacity of SMES 
using the ANN is smaller than that using moving aver-
age. 

5. Conclusions 

In this paper, the output power of the wind power gen-
eration is forecasted for ASPCS that is composed wind  
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Figure 4. The ANN forecasting output power of a wind 
power generation. 
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Figure 5. Forecasting result of output power of a wind 
power generation by ANN. 
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Figure 6. Forecasting result of output power of a wind 
power generation by ANN (between 10000 and 11000 sec-
onds). 
 
Table 1. Forecasting result of output power of a wind power 
generation. 

Forecasting method ANN Moving average 

Average error [MW] 0.028 –0.001 

Distribution [(MW)2] 0.025 0.028 

Maximum absolute error [MW] 0.685 0.725 
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Figure 7. Charge/discharge power of SMES. 
 

Table 2. Storage capacity of SMES. 

Forecasting method ANN Moving average

Maximum charge capacity[MJ] 72.0 73.5 

Maximum discharge capacity[MJ] –61.8 –83.4 

Average[MJ] 1.45 –0.05 

Absolute average[MJ] 6.47 7.83 
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power generation, SMES and FC-EL and supplies 
smoothed power from this system. As a result, the ANN 
has better accuracy than the moving average method and 
is able to forecast the output power, and the required sto-
rage capacity of SMES is smaller. In the future study, we 
optimize structure of the ANN and improve the selection 
method of learning data. 
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