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ABSTRACT 

We propose an accurate non numerical solution of the Fisher Equation (FE), capable of reproducing the known analy- 
tical solutions and those obtained from a numerical analysis. The form we propose is based on educated guesses con- 
cerning the possibility of merging diffusive and logistic behavior into a single formula. 
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1. Introduction 

In this paper, we propose a “quasi-exact” solution of the 
Fisher equation and compare it with solutions available 
in the literature. We also develop an extensive numerical 
analysis along with an accurate comparison with the so- 
lution presented here. 

The Fisher Equation (FE) introduced to describe the 
spreading of genes [1] has found applications in different 
fields of research ranging from ecology [2] to plasma 
physics [3]. In this paper we do not consider its applica- 
tive aspects, but we will discuss a solution of “quasi ex- 
act” nature, potentially useful for practical purposes1. 
The FE is a non-linear diffusion equation, which in its 
original formulation writes  
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In the above equation F is a function of the spatial co- 
ordinate and time and the initial condition is given by 
g(x), supposed to be a continuous infinitely differentiable 
function. From the dynamical point of view the equation 
describes a spatial diffusion in a homogeneous medium 
(the coefficient D is assumed to be independent of the 
spatial coordinate) embedded with a growth of logistic 
nature [4].The coefficients r and K are the growth rate 
and the carrying capacity of the environment respectively 
[4]. If the process is purely diffusive (r = 0), the solution 
of our evolution problem is just provided by the follow- 

ing Gauss Weierstrass transform [5] 
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with g(x) such that the integral in Equation (1.2) con- 
verges. 

In the case of   2
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In absence of the diffusion, (D = 0), Equation (1.1) 
describes a purely logistic process2 and its solution reads 
[4] 
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Where g0 is the initial condition associated with Eq- 
uation (1.1) and is characterized by an initial exponential 
growth successively undergoing a saturation, when the F 
values approaching the carrying capacity. We can pro- 
vide a tentative solution for the general case, by merging 
the characteristics implicit in Equations (1.3) and (1.4) 
through the following expression 
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possessing both features of spreading and logistic satura- 

1In view of its various applications the equation is referred also with 
other names (Kolmogorov, Burgers…) in this paper we avoid multiple 
nomenclature by just referring as FE. 

2We refer to the solution of the equation 
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tion. The above solution and the relevant derivation may 
sound as the consequences of a naive procedure without 
any rigor. We will provide a more sounded justification in 
the concluding section using an appropriate Hopf-Cole 
transform, here we will follow a pragmatic approach and 
accept it on the basis of its agreement with already exact 
known solutions and with full numerical solutions. Ex- 
amples of evolution at different times for an initially 
Gaussian distribution are given in Figure 1. 

The distribution has been normalized at the value taken 
at x = 0 at different times and the growth of the amplitude 
at the origin and for x = 7 is shown in Figure 2, the be- 
havior is that of a logistic curve with the same carrying 
capacity and different initial conditions. 

As we will see in the forthcoming section, the process 
described by Equation (1.1) can be viewed as a kind of 
travelling wave front at a given velocity, within the frame-  

 

 

Figure 1. Evolution of an initially Gaussian distribution 

    g x 2exp x  for D = 1, r = 1, K = 1 at different times 

t = 5 (dash), t = 20 (dot) t = 25 (continuous). 
 

 

Figure 2. Evolution vs. time of the function amplitude for 
two different points (x = 0 continuous and x = 7 dot) same 
parameters of Figure 1 (K = 103). 

work of the previous solution the front velocity can be 
evaluated as 
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The behavior of the velocity vs. the time is reported in 
Figure 3 for different values of the parameters. Our re-
sults allow to confirm that (see [6]) the asymptotic veloc- 
ity (namely the long time velocity) scales as 

f t
V


 rD              (1.7) 

while for short “times” 
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t
 t               (1.8) 

We have so far shown that our guessed solution is 
compatible with the phenomenology of the FE, in the 
forthcoming sections we will compare it with known 
analytical solutions and with numerical solutions ob- 
tained with an ad hoc developed code. 

2. Comparison with Analytical Solutions 

Various forms of exact solutions for the Fisher equation 
have been provided in the past. They are limited to spe- 
cific cases of the initial function and/or of the constant 
entering the equation itself. Albeit limited to specific 
cases these solution provides an important test for com- 
parison with our quasi exact form. One of these solutions, 
proposed in [7-9], is given by 

 

 

Figure 3. Front wave velocity vs. time (r = 1, D = 1, K = 103 
continuous line, r = 1, D = 2, K = 103 dot line). 
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and C is an arbitrary constant. To make a comparison we 
use Equation (1.5) with 
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The results of the integration are given in Figure 4 
where we have reported the comparison F(x, t0) and G(x, 
t0) (namely the approximate and exact solutions vs. x at 
fixed t) and the agreement is satisfactory. 

The logistic behaviour of the solution (2.1) is shown in 
Figure 5 where we have reported the time counterpart, 
namely F(x0, t) and G(x0, t) of Figure 2 on linear scale 
otherwise difference are not evident. 

In a more recent paper [10] an exact solution involving 
hyperbolic function has been given in the form 
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The comparison with the quasi exact form is shown in 
Figure 6 and the relevant agreement with F(x, t) is sig-
nificantly good. 

Other examples could be discussed, but will not be 
reported here, the general consistency of our semi-ana- 
lytical approach is confirmed at least for the simple form 
endowed in Equation (1.1). In the forthcoming section 
we will consider a comparison with a full numerical pro-
cedure along with some concluding remarks. 

 

 

Figure 4. Exact solution (2.1) (dot), approximate solution 
(1.5) (continuous) for t = 10, the agreement remains satis-
factory at any time. 

 

Figure 5. Same as Figure 2 for exact G(0, t) (dot) and ap- 
proximate F(0,t) (continuous) solutions. 

 

 

Figure 6. Exact solution (2.3) (dot), approximate solution 
(1.5) (continuous) for t = 7, the solutions are not distin- 
guishable at any time. 

3. Comparison with Numerical Solutions and 
Final Comments 

As already stressed, the exact solutions of the Fisher 
equation, used in the previous section as benchmarking 
of the validity of Equation (1.5), refer to specific cases of 
initial conditions. They are of limited usefulness in the 
application because they refer to conditions hardly ap- 
plicable to problems concerning evolution of populations, 
genes or saturation mechanisms in laser Physics. 

We will therefore further benchmark our solution with 
a series of numerical test using an ad hoc developed 
code. 

The solution of Equation (1.1) will be afforded nu- 
merically by means of an iterative procedure employing 
a symmetric split decomposition [11-13]. We reconsider 
the Equation (1.1) in the form 
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where Λ is assumed to be a function of the spatial coor-
dinate (as well as of time) but independent of the func-
tion F. The formal solution of our problem can accord-
ingly be written as 

      2, exp ΛxF x t t D g x          (3.2) 

Since the function Λ is depending on the spatial coor-
dinate we cannot use a naïve disentanglement of the ex-
ponential, a convenient solution based on a symmetric 
decomposition scheme is eventually provided by 
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Where o(δ3) specifies the error of the procedure, which 
is associated (among other things discussed in the fol-
lowing) with the integration step δ. 

If we divide the integration interval in N interval each 
one of size δ, the solution of our problem (3.2) can be 
cast in the form 
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which yields the following recursion 
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We can now go back to the Fisher equation and make 
the following substitution in Equation (3.5) 
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Thus finally ending up with the “linearized solution” 
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From the dynamical point of view we are left with a 
diffusive evolution problem counteracted by a spatially 
dependent growth rate. An example of comparison be- 
tween numerical and solution with the previously out- 
lined method and Equation (1.5) is given in Figure 7, 
where we have considered an initially Gaussian distribu- 
tion ruled by a FE and the agreement can be considered 
fairly accurate. The numerical procedure we have devel- 
oped is based on the symmetric split method, which is 
affected by an intrinsic error specified by [11-13] 
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The error is accordingly specified by the discretization 
step and by the commutator involving the operators A, B, 
namely 

 

Figure 7. Comparison between numerical (dot) and semi- 
analytical solution (dash) same parameters of Figure 1. 
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Abrupt variations of the function itself at different 
evolution steps may provide a large error even for small 
δ, furthermore a large number of iterations may deter- 
mine an accumulation of error which can be computed 
from 
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The integrals regarding the Weierstrass transform are 
explicitly derived using a Simpson scheme. The home- 
made code even though accurate is not optimized and we 
have used repeatedly the combinations of two numerical 
errors due to the split operator and to the Simpson inte- 
gration method. To make sure of the comparison we have 
attempted a second numerical procedure, based on FFT 
algorithm implemented in Mathematica. 

A 3-D perspective of the numerical integration is 
given in Figure 8, which clearly displays the dynamical 
features discussed in the previous parts of the paper. 

In this case too the comparison between analytical and 
numerical solutions yields a satisfactory agreement. 

The solution we have proposed, albeit naïve, seems to 
be rather efficient in solving the problem of providing the 
evolution of a population governed by the Fisher equa- 
tion. Our solution is based on the requirement that it 
should provide the logistic and diffusive behavior, im- 
plicit in the assumption underlying its original derivation 
in [1]. 

It should be not surprising that this family of equations 
can be solved in a simple form since the logistic equation, 
even though non-linear can be reduced to a linear form 
by an appropriate change of variable and more in general 
of Burger type equations, which can be reduced to a heat  
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Figure 8. Three dimensional evolution (t, x) of the Fisher 
distribution. 

 
equation by means of a Hopf-Cole transformation [14]. 

The following example can be useful to support the 
previous argument, by considering the differential equa-
tion 

   

1 ,

,0

t x

S
S v S r S

K

S x g x

      
 


        (3.11) 

In this case we are not dealing with a diffusive Fisher 
equation but with a simpler form involving a logistic 
saturation and a coordinate translation3. According to the 
same arguments invoked for the FE, we “guess” that the 
solution of Equation (3.11) writes4 

   

   

e
,

1
1 e 1

rt

rt

g x vt
S x t

g x vt
K




  
      (3.12) 

namely the composition of a translation and of a logistic. 
The above solution can be obtained in rigorous terms after 
setting5 
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The transformation (3.13) eliminates the non-linearity 
in Equation (3.11) and this allows the solution in exact 
form (see [3] for further details). 

Regarding the Fisher equation, the presence of the 
second derivative does not allow the elimination of the 

non- linearity, the corresponding equation reads indeed 
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which contains a non-linearity which can be neglected 
whenever 
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which is not verified for large values of F(x, t), namely in 
the region in which the saturation occurs. 

In a forthcoming investigation we will extend the 
analysis to multi-dimensional (2-D, 3-D) configurations 
and discuss specific examples of applications. 
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