New Method for Measurement of Plant Roots Specific Surface

Abstract

To provide enough space to carry all surface charges responsible for high cation exchange capacity of plant roots, large area of the root specific surface is necessary, however all experimental methods used up to date give too small surface area values. In this paper, we propose to measure the plant roots surface area using water vapor adsorption isotherm. This method gives roots specific surface areas compatible to CEC. Methodical aspects of the measurements are described along with theoretical background for calculating specific surface area on the example of roots of barley grown in nutrient solution.

Share and Cite:

G. Jozefaciuk and M. Lukowska, "New Method for Measurement of Plant Roots Specific Surface," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1088-1094. doi: 10.4236/ajps.2013.45135.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. H. Nye, “The Relation between the Radius of a Root and Its Nutrient-Adsorbing Power,” J. Exp. Bot., Vol. 24, 1973, pp. 783-786. doi:10.1093/jxb/24.5.783
[2] M. Siberbrush and S. A. Barber, “Sensitivity of Simulated Phosphorus Uptake to Parameters Used by a Mechanistic- Mathematical Model,” Plant and Soil, Vol. 74, No. 1, 1983, pp. 93-100. doi:10.1007/BF02178744
[3] S. E. P. R. Troelstra and F. Berendse, “Root CEC Determinations to Establish Root Biomasses of Two Plant Species Grown in Mixtures,” Plant and Soil, Vol. 64, No. 2, 1982, pp. 277-281. doi:10.1007/BF02184262
[4] G. Jozefaciuk and A. Szatanik-Kloc, “Decrease in Variable Charge and Acidity of Root Surface under Al Treatment Are Correlated with Al Tolerance of Cereal Plants,” Plant and Soil, Vol. 260, No. 1-2, 2004, pp. 137-145. doi:10.1023/B:PLSO.0000030175.23904.5a
[5] T. W. Cooper, W. Jones, S. Motherwell and G. M. Day, “Database Guided Conformation Selection in Crystal Structure Prediction of Alanine,” CrystEngComm, Vol. 9, No. 7, 2007, pp. 595-602. doi:10.1039/b702136d
[6] H. E. Carley and R. D. Watson, “A New Gravimetric Method for Estimating Root-Surface Areas,” Soil Science, Vol. 102, No. 5, 1996, pp. 289-291. doi:10.1097/00010694-196611000-00001
[7] S. A. Ansari, P. Kumar and B. N. Gupta, “Root Surface Area Measurements Based on Adsorption and Desorption of Nitrite,” Plant Soil, Vol. 175, No. 1, 1995, pp. 133-137. doi:10.1007/BF02413018
[8] G. Jozefaciuk and A. Szatanik-Kloc, “Aluminium-Induced Changes in the Surface and Micropore Properties of Wheat Roots: A Study Using the Water Vapor Adsorption- Bdesorption Technique,” Plant Soil, Vol. 233, No. 1, 2001, pp. 95-108. doi:10.1023/A:1010373116199
[9] G. Jozefaciuk and A. Szatanik-Kloc, “Changes in Specific Area and Energy of Root Surface of Cereal Plants in Al-Solution Cultures. Water Vapor Adsorption Studies,” Plant and Soil, Vol. 250, No. 1, 2003, pp. 129-140. doi:10.1023/A:1022813018940
[10] Szatanik-Kloc, “Effect of pH and Zn-Stress on Micropore System of the Rye Roots,” International Agrophysics, Vol. 26, 2012, pp. 311-316.
[11] Szatanik-Kloc and G. Jozefaciuk, “Effect of pH and Aluminium on Surface Properties of Barley Roots as Determined from Water Vapor Adsorption,” Acta Physiologiae Plantarum, Vol. 19, No. 3, 1997, pp. 327-332. doi:10.1007/s11738-997-0009-6
[12] S. J. Gregg and K. S. W. Sing, “Adsorption, Surface Area and Porosity,” Academic Press, London/New York, 1967.
[13] K. S. W. Sing, “Reporting Physisorption Data for Gas/ Solid Systems with the Special Reference to the Determination of Surface Area and Porosity,” Pure and Applied Chemistry, Vol. 54, No. 11, 1982, pp. 2201-2218. doi:10.1351/pac198254112201
[14] J. Oscik, “Adsorption,” Ellis Horwood, Chichester, 1982.
[15] H. Marschner and V. Romheld, “In Vivo Measurement of Root-Induced pH Changes at the Soil-Root Interface: Effect of Plant Species and Nitrogen Source,” Z. Pflanzenphysiology, Vol. 111, 1983, pp. 249-254.
[16] P. L. Hall and D. M. Astill “Adsorption of Water by Homoionic Exchange Forms of Wyoming Bentonite (SWy1),” Clays and Clay Minerals, Vol. 37, 1989, pp. 355-363. doi:10.1346/CCMN.1989.0370409
[17] J. M. Cases, I. Berend, M. Francois, J. P. Uriot, L. J. Michot and F. Thomas, “Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite. 3. The Mg, Ca, Sr, and Ba Exchanged Forms,” Clays and Clay Minerals, Vol. 45, 1997, pp. 8-22. doi:10.1346/CCMN.1997.0450102
[18] S. Brunauer, P. H. Emmet and E. Teller, “Adsorption of Gases in Multimolecular Layers,” Journal of the American Chemical Society, Vol. 60, No. 2, 1938, pp. 309- 314. doi:10.1021/ja01269a023
[19] G. L. Aranovich, “The Theory of Polymolecular Adsorption,” Langmuir, Vol. 8, No. 2, 1992, pp. 736-739. doi:10.1021/la00038a071

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.