Alteration of fatty acid molecular species in ceramide and glucosylceramide under heat stress and expression of sphingolipid-related genes
Ken-ichi Nagai, Nobuyoshi Takahashi, Toshiko Moue, Yukio Niimura
.
DOI: 10.4236/abc.2011.13006   PDF    HTML     6,053 Downloads   13,025 Views   Citations

Abstract

Physical stresses such as high temperature or hyper- osmosis are known causes of intracellular ceramide (Cer) accumulation in mammalian epithelial cells; these stresses also result in the activation of the biosy- ntheses of glucosylceramide (GlcCer) or galactosyl- ceramide via ceramide glycosylation. We confirmed that intracellular Cer and GlcCer increased in mouse fibroblast Mop 8 cells under conditions of heat stress. When molecular species of Cer, GlcCer and sphingo- myelin (SM) were analyzed by matrix assisted laser desorption ionization time of flight mass spectrome- try (MALDI-TOF MS), the molecular ion peaks of Cer (d18:1 - C16:0, Na+) and Cer (d18:1 - C22:0, Na+) increased under heat stress compared with those of Cer (d18:1 - C24:1, Na+) and Cer (d18:1 - C24:0, Na+). GlcCer and SM demonstrated the wide spectra of fatty acyl chains compared with that of Cer. The ratio of GlcCer consisted of hydroxy fatty acid to that con- sisted of non-hydroxy fatty acid increased 2-5-fold in heat stressed cells. Cer metabolism-related genes, se- rine palmitoyltransferase (Spt), ceramide synthase-1, -2, -4, -5 and -6 (CerS1, -2, -4, -5 and -6), neutral sphingomyelinase-1 and -2 (nSMase1 and nS-Mase2), sphingomyelin synthase-1 (SgmS1), and ceramide glu- cosyltransferase (GlcT), were activated after 16 h un- der heat stress at 42?C. Activation of Sg-mS1 and GlcT genes played a role as Cer scavengers in the decrease of intracellular Cer levels. Activation of Cer- S5 and/or CerS6 gene may contribute to the accu- mulation of Cer species of (d18:1 - C16:0) under heat stress.

Share and Cite:

Nagai, K. , Takahashi, N. , Moue, T. and Niimura, Y. (2011) Alteration of fatty acid molecular species in ceramide and glucosylceramide under heat stress and expression of sphingolipid-related genes. Advances in Biological Chemistry, 1, 35-48. doi: 10.4236/abc.2011.13006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hannun, Y.A. and Luberto, C. (2000) Ceramide in the eukaryotic stress response. Trends in Cell Biology, 10, 73-80. doi:10.1016/S0962-8924(99)01694-3
[2] Hannun, Y. A. and Obeid, L. M. (2008) Principles of bio- active lipid signalling: Lessons from sphingolipids. Nature Reviews Molecular Cell Biology, 9, 139-150. doi:10.1038/nrm2329
[3] Yang, J., Sun, Y., Yu, S. and Duerksen-Hughes, P.J. (2004) Ceramide and other sphingolipids in cellular re-sponses. Cell Biochemistry and Biophysics, 40, 323-350. doi:10.1385/CBB:40:3:323
[4] Bartke, N. and Hannun, Y.A. (2009) Bioactive sphingoli-pids: Metabolism and function. Journal of Lipid Research, 50, S91-S96. doi:10.1194/jlr.R800080-JLR200
[5] Nikolova-Karakashian, M.N. and Rozenova, K.A. (2010) Ceramide in stress response. Advances in Experimental Medicine and Biology, 688, 87-108. doi:10.1007/978-1-4419-6741-1_6
[6] Okazaki, T., Bell, R.M. and Hannun, Y.A. (1989) Sphin-gomyelin turnover induced by vitamin D3 in HL-60 cells, Role in cell differentiation. Journal of Biological Chemi-stry, 264, 19076-19080.
[7] Venable, M.E., Lee, J.Y., Smyth, M.J., Bielawska, A. and Obeid, L.M. (1995) Role of ceramide in cellular senes-cence. Journal of Biological Chemistry, 270, 30701- 30708. doi:10.1074/jbc.270.51.30701
[8] Hetz, C.A., Hunn, M., Rojas, P., Torres, V., Leyton, L. and Quest, A.F. (2002) Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: Onset of necrosis is associated with delayed cera-mide increase. Journal of Cell Science, 115, 4671-4683. doi:10.1242/jcs.00153
[9] Adam, D., Heinrich, M., Kabelitz, D. And Schutze, S. (2002) Ceramide: Does it matter for T cells? TRENDS in Immunology, 23, 1-4. doi:10.1016/S1471-4906(01)02091-9
[10] Obeid, L.M., Linardic, C.M., Karolak, L.A. and Hannun, Y.A. (1993) Programmed cell death induced by ceramide. Science, 259, 1769-1771. doi:10.1126/science.8456305
[11] Schenck, M., Carpinteiro, A., Grassmé, H., Lang, F. and Gulbins, E. (2007) Ceramide: Physiological and patho-physiological aspects. Archives of Biochemistry and Bio- physics, 462, 171-175. doi:10.1016/j.abb.2007.03.031
[12] Schiffmann, S., Sandnery, J., Birod, K., et al. (2009) Ce- ramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis, 30, 745-752. doi:10.1093/carcin/bgp061
[13] Kondo, T., Matsuda, T., Tashima, M., et al. (2000) Sup-pression of heat shock protein-70 by ceramide in heat shock-induced HL-60 cell apoptosis. Journal of Biological Chemistry, 275, 8872-8879. doi:10.1074/jbc.275.12.8872
[14] Kondo, T., Matsuda, T., Kitano, T., et al. (2000) Role of c-jun expression increased by heat shock- and cera-mide-activated caspase-3 in HL-60 cell apoptosis. Possible involvement of ceramide in heat shock-induced apo- ptosis. Journal of Biological Chemistry, 275, 7668-7676. doi:10.1074/jbc.275.11.7668
[15] Chang, Y., Abe, A. and Shayman, J.A. (1995) Ceramide formation during heat shock: A potential mediator of alpha B-crystallin transcription. Proceedings of the National Academy of Sciences of the United States of America, 92, 12275-12279. doi:10.1073/pnas.92.26.12275
[16] Jenkins, G.M., Cowart, L.A., Signorell P, J., et al. (2002) Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. Journal of Biological Chemistry, 277, 42572-42578. doi:10.1074/jbc.M207346200
[17] Sawai, H. and Hannun, Y.A. (1999) Ceramide and sphin- gomyelinases in the regulation of stress responses. Che- mistry and Physics of Lipids, 102, 141-147. doi:10.1016/S0009-3084(99)00082-1
[18] Komori, H., Ichikawa, S., Hirabayashi, Y. and Ito, M. (1999) Regulation of intracellular ceramide content in B16 melanoma cells. Biological implications of ceramide glycosylation. Journal of Biological Chemistry, 274, 8981- 8987. doi:10.1074/jbc.274.13.8981
[19] Uchida, Y., Murata, S., Schmuth, M., et al. (2002) Glu-cosylceramide synthesis and synthase expression protect against ceramide-induced stress. Journal of Lipid Re-search, 43, 1293-1302.
[20] Niimura, Y. and Nagai, K. (2008) Metabolic responses of sulfatide and related glycolipids in madin-darby canine kidney (MDCK) cells under osmotic stresses. Compara-tive Biochemistry and Physiology: B, 149, 161-167.
[21] Niimura, Y., Moue, T., Takahashi, N. and Nagai, K. (2010) Medium osmolarity-dependent biosynthesis of renal cellular sulfoglycolipids is mediated by the MAPK signaling pathway. Biochimica et Biophysica Acta, 1801, 1155-1162.
[22] Niimura, Y., Moue, T., Takahashi, N. and Nagai, K. (2010) Modification of sphingoglycolipids and sulfolipids in kidney cell lines under heat stress: Activation of mono-hexosylceramide synthesis as a ceramide scavenger. Gly- cobiology, 20, 710-717. doi:10.1093/glycob/cwq018
[23] Muller, W.J., Naujokas, M.A. and Hassell, J.A. (1984) Isolation of large T antigen-producing mouse cell lines capable of supporting replication of polyomavirus-pla- smid recombinants. Molecular and Cellular Biology, 4, 2406-2412.
[24] Niimura, Y. and Ishizuka, I. (2006) Isolation and identi-fication of nine sulfated glycosphingolipids containing two unique sulfated gangliosides from the African green monkey kidney cells, Verots S3, and their possible meta- bolic pathways. Glycobiology, 16, 729-735. doi:10.1093/glycob/cwj114
[25] Tanaka, K., Yamada, M., Tamiya-Koizumi, K., et al. (2011) Systematic analyses of free ceramide species and ceramide species comprising neutral glycosphingolipids by MALDI-TOF MS with high-energy CID. Glycocon-jugate Journal, 28, 67-87. doi:10.1007/s10719-011-9325-6
[26] Hanada, K. (2003) Serine palmitoyltransferase, a key en- zyme of sphingolipid metabolism. Biochimica et Biophy-sica Acta, 1632, 16-30.
[27] Pewzner-Jung, Y., Ben-Dor, S. and Futerman, A.H. (2009) When do lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. Journal of Biological Chemistry, 281, 25001-25005. doi:10.1074/jbc.R600010200
[28] Venkataraman, K. Riebeling, C. Bodennec, J., et al. (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18- (dihydro)ceramide) synthesis in a fumonisin B1-indepen- dent manner in mammalian cells. Journal of Biological Chemistry, 277, 35642-35649. doi:10.1074/jbc.M205211200
[29] Sridevi, P., Alexander, H., Laviad, E.L., et al. (2009) Ce- ramide synthase 1 is regulated by proteasomal mediated turnover. Biochimica et Biophysica Acta, 1793, 1218- 1227. doi:10.1016/j.bbamcr.2009.04.006
[30] Laviad, E.L., Albee, L., Pankova-Kholmyansky, I., et al. (2008) Characterization of ceramide synthase 2: Tissue distribution, substrate specificity and inhibition by sp- hingosine-1-phosphate. Journal of Biological Chemistry, 283, 5677-5684. doi:10.1074/jbc.M707386200
[31] Mizutani, Y., Mitsutake, S., Tsuji, K. Kihara, A. and Iga-rashi, Y. (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie, 91, 784-790. doi:10.1016/j.biochi.2009.04.001
[32] Stiban, J., Tidhar, R. and Futerman, A.H. (2010) Cera-mide synthases: Roles in cell physiology and signaling. Advances in Experimental Medicine and Biology, 688, 61-71. doi:10.1007/978-1-4419-6741-1_4
[33] Mizutani, Y., Kihara, A., Chiba, H., Tojo, H. and Igarashi, Y. (2008) 2-Hydroxy-ceramide synthesis by ceramide synthase family: Enzymatic basis for the preference of FA chain length. Journal of Lipid Research, 49, 2356- 2364. doi:10.1194/jlr.M800158-JLR200
[34] Alderson, N.L., Rembiesa, B.M., Walla, M.D., et al. (2004) The human FA2H gene encodes a fatty acid 2- hydroxylase. Journal of Biological Chemistry, 279, 48562- 48568. doi:10.1074/jbc.M406649200
[35] Niimura, Y. and Nagai, K. (2008) Modulation of fatty acid molecular species in sulfatide and its precursor ga-lactosylceramide of Madin-Darby canine kidney (MDCK) cells under osmotic stresses. In: Sasaki, D., Ed. Glycoli-pids: New Research, Nova Science Publishers, Haup-pauge, 18-28.
[36] Yabu, T., Imamura, S., Yamashita, M. and Okazaki, T. (2008) Identification of Mg2+-dependent neutral sphin-gomyelinase 1 as a mediator of heat stress-induced cera-mide generation and apoptosis. Journal of Biological Che- mistry, 283, 29971-29982. doi:10.1074/jbc.M805402200
[37] Clarke, C.J. and Hannun, Y.A. (2006) Neutral sphingo-myelinases and nSMase2: bridging the gaps. Biochimica et Biophysica Acta, 1758, 1893-1901. doi:10.1016/j.bbamem.2006.06.025
[38] Wu, B.X., Clarke, C.J. and Hannun, Y.A. (2010) Mam- malian neutral sphingomyelinases: Regulation and ro- les in cell signaling responses. Neuromolecular Medi- cine, 12, 320-330. doi:10.1007/s12017-010-8120-z
[39] Zumbansen, M. and Stoffel, W. (2002) Neutral sphingo-myelinase 1 deficiency in the mouse causes no lipid sto- rage disease. Molecular and Cellular Biology, 22, 3633- 3638. doi:10.1128/MCB.22.11.3633-3638.2002
[40] Ito, H., Murakami, M., Furuhata, A., et al. (2009) Tran-scriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anticancer drug, daunorubicin. Biochi- mica et Biophysica Acta, 1789, 681-690.
[41] Levy, M., Castillo, S.S. and Goldkorn, T. (2006) nSM- ase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochemical and Biophysical Research Communications, 344, 900-905. doi:10.1016/j.bbrc.2006.04.013
[42] Levy, M., Khan, E., Careaga, M. and Goldkorn, T. (2009) Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Lung Cellular and Molecular Physiology, 297, L125-L133. doi:10.1152/ajplung.00031.2009
[43] Tafesse, F.G., Ternes, P. and Holthuis, J.C.M. (2006) The multigenic sphingomyelin synthase family. Journal of Biological Chemistry, 281, 29421-29425. doi:10.1074/jbc.R600021200
[44] Rani, C S., Abe, A., Chang, Y., et al. (1995) Cell cycle arrest induced by an inhibitor of glucosylceramide syn-thase. Correlation with cyclin-dependent kinases. Journal of Biological Chemistry, 270, 2859-2867.
[45] Shayman, J.A., Mahdiyoun, S., Deshmukh, G., et al. (1990) Glucosphingolipid dependence of hormonesti- mulated inositol trisphosphate formation. Journal of Bio- logical Chemistry, 265, 12135-12138.
[46] Ravid, T., Tsaba, A., Gee, P., et al. (2003) Ceramide ac-cumulation precedes caspase-3 activation during apoptosis of A549 human lung adenocarcinoma cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 284, L1082-1092.
[47] Bleicher, R.J. and Cabot, M.C. (2002) Glucosylceramide synthase and apoptosis. Biochimica et Biophysica Acta, 1585, 172-178.
[48] Gouaze-Andersson, V. and Cabot, M.C. (2006) Glycos-phingolipids and drug resistance. Biochimica et Biophy-sica Acta, 1758, 2096-2103. doi:10.1016/j.bbamem.2006.08.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.