Growth and Development Responses of Tobacco (Nicotiana tabacum L.) to Changes in Physical and Hydrological Soil Properties Due to Minimum Tillage

Abstract

Minimum tillage is a soil conservation practice involving a reduction in soil disturbance and topsoil compaction, which could minimize environmental impact of the tobacco cultivation system. The objectives of this study were to evaluate the development and growth responses of Nicotiana tabacum and the changes in the physical and hydrological soil properties after the application of two different treatments: minimum tillage (MT) and conventional tillage (CT). MT did not cause any pronounced differences in the crop yield compared to CT, instead it positively affected the physical and hydrological soil properties and the plants’ vegetative growth. Under MT, the soil showed a higher structural stability than CT with significantly lower compaction values. With MT the soil showed a higher capacity to maintain and store water during the drought periods, evidenced by soil moisture values significantly higher than CT. Tobacco on MT showed a good response, significantly prolonging the vegetative growth stage which at harvest determined a higher stem height, greater number of leaves and longer internodes.

Share and Cite:

Orlando, F. , Napoli, M. , Marta, A. , Natali, F. , Mancini, M. , Zanchi, C. and Orlandini, S. (2011) Growth and Development Responses of Tobacco (Nicotiana tabacum L.) to Changes in Physical and Hydrological Soil Properties Due to Minimum Tillage. American Journal of Plant Sciences, 2, 334-344. doi: 10.4236/ajps.2011.23038.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. Chisci and C. Zanchi, “The Influence of Different Tillage Systems and Different Crops on Soil Losses on Hilly Silty-Clayey Soil,” In: R. P. C. Morgan, Ed., Soil Conservation, Problems and Prospects, John Wiley & Sons, Inc., Hoboken, 1980, pp. 211-217.
[2] W. Pansak, T. H. Hilger, G. Dercon, T. Kongkaew, and G. Cadisch, “Changes in the Relationship between Soil Erosion and N Loss Pathways after Establishing Soil Conservation System in Uplands of Northeast Thailand,” Agriculture, Ecosystems & Environment, Vol. 128, 2008, pp. 167-176.
[3] J. N. Tullberg, P. J. Ziebarth and Y. Li, “Tillage and Traffic Effects on Runoff,” Australian Journal of Soil Research, Vol. 39, No. 2, 2001, pp. 249-257. doi:10.1071/SR00019
[4] N. Koga, H. Tsuruta, H. Tsuji and H. Nakano, “Fuel Consumption-Derived CO2 Emissions under Conventional and Reduced Tillage Cropping Systems in Northern Japan,” Agriculture, Ecosystems & Environment, Vol. 99, 2003, pp. 213-219. doi:10.1016/S0167-8809(03)00132-4
[5] M. L. Sanchez, M. I. Ozores, R. Colle, M. J. Lopez, B. De. Torre, M. A. Garcia and I. Perez, “Soil CO2 Fluxes in Cereal Land Use of the Spanish Plateau: Influence of Conventional and Reduced Tillage Practices,” Chemosphere, Vol. 47, 2002, pp. 837-844.
[6] C. H. Sijtsma, A. J. Campbell, N. B. McLaughlin and M. R. Carter, “Comparative Tillage Costs for Crop Rotations Utilizing Minimum Tillage on Farm Scale,” Soil and Tillage Research, Vol. 49, No. 3, 1998, pp. 223-231. doi:10.1016/S0167-1987(98)00175-5
[7] C. Cantero-Martinez, P. Angas and J. Lampurlanes, “Growth, Yield and Water Productivity of Barley (Hordeum vulgare L.) Affected by Tillage and N Fertilization in Mediterranean Semiarid, Rainfed Conditions of Spain,” Field Crops Research, Vol. 84, No. 3, 2003, pp. 341-357. doi:10.1016/S0378-4290(03)00101-1
[8] D. Chatskikh, J. E. Olesen, E. M. Hansen, L. Elsgaard and B. M. Petersen, “Effects of Reduced Tillage on Net Greenhouse Gas Fluxes from Loamy Sand Soil under Winter Crops in Denmark,” Agriculture, Ecosystems & Environment, Vol. 128, No. 1-2, 2008, pp. 117-126. doi:10.1016/j.agee.2008.05.010
[9] S. De. Gryze, J. Six, H. Bossuyt, K. Van. Oost and R. Merckx, “The Relationship between Landform and the Distribution of Soil C, N, and P under Conventional and Minimum Tillage,” Geoderma, Vol. 144, 2008, pp. 180-188.
[10] K. P. Fabrizzi, F. O. Garcìa, J. L. Costa and L. I. Picone, “Soil Water Dynamics, Physical Properties and Corn and Wheat Responses to Minimum Tillage and No-Tillage Systems in the Southern Pampas of Argentina,” Soil and Tillage Research, Vol. 81, No. 1, 2005, pp. 57-69. doi:10.1016/j.still.2004.05.001
[11] C. Giordani., P. Sani and C. Zanchi, “Traditional Tillage versus Reduced Strip Tillage: Their Effects on Soil Moisture, Crop Production, Soil Erosion, Weeds Diffusion, and Economical Aspects,” Proceedings of the 3rd International Conference on Land Degradation: New Trends toward Global Sustainability, Rio De Janeiro, 17-21 September 2001, p. 110.
[12] K. Habtegebrial, B. R. Singh and M. Haile, “Impact of Tillage and Nitrogen Fertilization on Yield, Nitrogen Use Efficiency of Tef (Eragrostis Tef (Zucc.) Trotter) and Soil Properties,” Soil and Tillage Research, Vol. 94, No. 1, 2007, pp. 55-63. doi:10.1016/j.still.2006.07.002
[13] G. P. Lafond, W. E. May, F. C. Stevenson, and D. A. Derksen, “Effects of Tillage Systems and Rotations on Crop Production for a Thin Black Chernozem in the Canadian Prairies,” Soil and Tillage Research, Vol. 89, No. 2, 2006, pp. 232-245. doi:10.1016/j.still.2005.07.014
[14] G. A. Peterson, A. D. Halvorson, J. L. Havlin, O. R. Jones, D. J. Lyon and D. L. Tanaka, “Reduced Tillage and Increasing Cropping Intensity in the Great Plains Converses Soil C,” Soil and Tillage Research, Vol. 47, No. 3-4, 1998, pp. 207-218. doi:10.1016/S0167-1987(98)00107-X
[15] K. D’Haene, J. Vermang, W. M. Cornelis, B. L. M. Leory, W. Schiettecatte, S. De. Neve, D. Gabriels and G. Hofman, “Reduced Tillage Effects on Physical Properties of Silt Loam Soils Growing Root Crops,” Soil and Tillage Research, Vol. 99, 2008, pp. 279-290.
[16] K. Areya, S. Sharma, R. M. Bajracharya and N. P. Rajbhandari, “Applications of Reduced Tillage in Hills of Central Nepal,” Soil and Tillage Research, Vol. 88, No. 1-2, 2006, pp. 16-29. doi:10.1016/j.still.2005.04.003
[17] K. Areya, S. Sharma, R. M. Bajracharya and N. P. Rajbhandari, “Developing a Sustainable Agro-System for Central Nepal Using Reduced Tillage and Straw Mulching,” Journal of Environmental Management, Vol. 88, No. 3, 2008, pp. 547-555. doi:10.1016/j.jenvman.2007.03.017
[18] A. Berner, I. Hildermann, A. Fliebach, L. Pfiffner, U. Niggli and P. Mader, “Crop Yield and Soil Fertility Response to Reduced Tillage under Organic Management,” Soil and Tillage Research, Vol. 101, No. 1-2, 2008, pp. 89-96. doi:10.1016/j.still.2008.07.012
[19] X. Hao, C. Chang, R. L. Conner and P. Bergen, “Effect of Minimum Tillage and Crop Sequence on Crop Yield and Quality under Irrigation in Southern Alberta Clay Loam Soil,” Soil and Tillage Research, Vol. 59, No. 1-2, 2001, pp. 45-55. doi:10.1016/S0167-1987(00)00185-9
[20] J. L. Hernanz, V. S. Giron and C. Cerisola, “Long-Term Energy Use and Economic Evaluation of Three Tillage System for Cereal and Legume Production in Central Spain,” Soil and Tillage Research, Vol. 35, No. 4, 1995, pp. 183-198. doi:10.1016/0167-1987(95)00490-4
[21] D. B. Ishaya, P. Tunku and N. C. Kuchinda, “Evaluation of Some Weed Control Treatments for Long Season Weed Control in Maize (Zea Mays L.) under Zero and Minimum Tillage at Samaru, in Nigeria,” Crop Protection, Vol. 27, 2008, pp. 1047-1051.
[22] S. K. Jalota, G. S. Buttar, A. Sood, G. B. S. Chahal, S. S. Ray and S. Panigrahy, “Effects of Sowing Date, Tillage and Residue Management on Productivity of Cotton (Gossypium hirsutum L.) - Wheat (Triticum aestivum L.) System in Northwest India,” Soil and Tillage Research, Vol. 99, No. 1, 2008, pp. 76-83. doi:10.1016/j.still.2008.01.005
[23] B. Tulema, J. B. Aune, F. H. Johnsen, and B. Vanlauwe, “The Prospects of Reduced Tillage in Tef (Eragrotis tef Zucca) in Gare Arera, West Shawa Zone of Oromiya, Ethiopia,” Soil and Tillage Research, Vol. 99, No. 1, 2008, pp. 58-65. doi:10.1016/j.still.2007.12.001
[24] R. ?akir and U. ?ebi, “Growth and Dry Matter Accumulation Dynamics off Flue-Cured Tobacco under Different Soil Moisture Regimes,” Journal of Agronomy, Vol. 5, 2006, pp. 78-86.
[25] B. F. Clough and F. L. Milthorpe, “Effects of Water Deficit on Leaf Development in Tobacco,” Australian Journal of Plant Physiology, Vol. 2, No. 3, 1975, pp. 291-300. doi:10.1071/PP9750291
[26] J. M. Hopkinson, “Effects of Early Drought and Transplanting on the Subsequent Development of the Tobacco Plant,” Australian Journal of Agricultural Research, Vol. 19, No. 1, 1968, pp. 47-57. doi:10.1071/AR9680047
[27] B. L. Benham, D. H. Vaughan, M. K. Laird, B. B. Ross and D. R. Peek, “Surface water quality impacts of conservation tillage practices on Burley Tobacco production systems in southwest virginia,” Water, Air, & Soil Pollution, Vol. 179, No. 1-4, 2007, pp. 159-166. doi:10.1007/s11270-006-9221-z
[28] L. Fisher, “Potential for Reduced Tillage Tobacco Production in North Carolina,” Proceedings of the 26th Southern Conservation Tillage Conference for Sustainable Agriculture, North Carolina, 8-9 June 2004, Technical Bulletin (TB) n. 321, pp. 161-162.
[29] D. G. Shilling, A. D. Worsham and D. A. Danehower, “Influence of Mulch, Tillage and Diphenamid on Weed Control, Yield and Quality in No-Till Flue-Cured Tobacco (Nicotiana tabcum),” Weed Science, Vol. 34, 1986, pp. 738-744.
[30] D. C. Yoder, T. L. Cope, J. B. Wills and H. P. Denton, “No-Till Transplanting of Vegetables and Tobacco to Reduce Erosion and Nutrient Surface Runoff,” Journal of Soil and Water Conservation, Vol. 60, No. 2, 2005, pp. 68-72.
[31] B. Pearce and G. Schwab, “Field Selection, Tillage and Fertilization,” In: K. Seebold and B. Pearce, Eds., Kentucky Tobacco Production Guide, Publishers of University of Kentucky, Lexington, 2008, pp. 23-25.
[32] C. H. B. Priestley and R. J. Taylor, “On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters,” Monthly Weather Review, Vol. 100, 1972, pp. 81-92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
[33] J. Doorenbos and A. H. Kassam, “Yield Response to Water,” FAO Irrigation and Drainage Paper 33, Food and Agriculture Organization of the United Nations, Rome, 1986.
[34] Italian Ministry of Agricultural, Food and ForestryPolicies (MIPAAF), “Metodi Ufficiali Di Analisi Fisica Del Suolo, Ministerial Decree of 01/08/97,” Official Gazette―Ordinary Supplement, No. 204, 2 September 1997.
[35] Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), “MetodiUfficiali Di AnalisiChimica Del Suolo, Ministerial Decree of 13/09/99,” Official Gazette―Ordinary Supplement, No. 248, 21 October 1999.
[36] J. D. Milliman, “Marine Carbonates. Recent Sedimentary Carbonates Part 1,” 14th Edition, Springer-Verlag, New York, 1974.
[37] G. Muller and M. Gatsner, “Chemical Analysis,” Neues Jb Miner Monat , Vol. 10, 1971, pp. 466-469.
[38] S. R. Olsen, C. V. Cole, F. S. Watanabe and L. A. Dean, “Methods of Soil Analysis: Physical Properties, Part 1,” In: A. Klute, Ed., Agronomy Monograph No. 9, ASA and SSSA, Madison, 1954, pp. 403-430.
[39] J. Murphy and J. P. Riley, “A Modified Single Solution Method for the Determination of Phosphate in Natural Waters,” Analytica Chimica Acta, Vol. 27, 1962, pp. 31-36. doi:10.1016/S0003-2670(00)88444-5
[40] C. L. Bascomb, “Rapid Method for the Determination of the Cation Exchange Capacity of Calcareous and Non-Calcareous Soils,” Journal of the Science of Food and Agriculture, Vol. 15, No. 12, 1964, pp. 821-823. doi:10.1002/jsfa.2740151201
[41] A. Mehlich, “Determination of Cation and Anion Exchange Properties of Soils,” Soil Science, Vol. 66, No. 6, 1948, pp. 429-445. doi:10.1097/00010694-194812000-00004
[42] G. W. Gee and J. W. Bauder, “Particle-Size Analysis,” In: A. Klute, Ed., Methods of Soil Analysis: Part 1. Agronomy Monograph No. 9, ASA, Madison, 1986.
[43] L. A. Richards and M. Fireman, “Pressure-Plate Apparatus for Measuring Moisture Sorption and Transmission by Soils,” Soil Science, Vol. 56, No. 6, 1943, pp. 395-404. doi:10.1097/00010694-194312000-00001
[44] Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA), “A Scale for Coding Growth Stages in Tobacco Crops,” CORESTA Guide N?7, February 2009.
[45] U. Meier, “Growth Stage of Mono- and Dicotyledonous plants,” 2nd Edition, Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, 2001.
[46] R. G. Sharp, M. A. Else, R. W. Cameron and W. J. Davies, “Water Deficits Promote FLowering in Rhododendron via Regulation of Pre and Post Initiation Development,” Scientia Horticulturae, Vol. 120, No. 4, 2009, pp. 511-517. doi:10.1016/j.scienta.2008.12.008
[47] R. A. Stern, I. Adato, M. Goren, D. Eisenstein and S. Gazit, “Effects of Autumnal Water Stress on Litchi Flowering and Yield in Israel,” Scientia Horticulturae, Vol. 54, No. 4, 1993, pp. 295-302. doi:10.1016/0304-4238(93)90108-3
[48] S. D. Ross, “Promotion of Flowering in Potted Picea Engelmanni Grafts Effects of Heat Drought Gibberellin A 4-7 and Their Timing,” Canadian Journal of Forest Re- search, Vol. 15, No. 4, 1986, pp.618-624. doi:10.1139/x85-101
[49] P. D. Mitchell, D. J. Chalmers, P. H. Jerie and G. Burge, “The Use of Initial Withholding of Irrigation and Tree Spacing to Enhance the Effect of Regulated Deficit Irrigation on Pear Trees,” Journal of the American Society for Horticultural Science, Vol. 111, 1986, pp. 858-861.
[50] A. J. Krajewski and E. Rabe, “Citrus Flowering: A Critical Evaluation,” Journal of Horticultural Science, Vol. 70, 1995, pp. 357-374.
[51] J. Cuevas, V. Pinillos, M. L. Caete, M. Gonzlez, F. Alonso, M. D. Fernandez and J. J. Hueso, “Optimal Levels of Postharvest Deficit Irrigation for Promoting Early Flowering and Harvest Dates in Loquat (Eriobotrya Japonica Lindl.),” Agricultural Water Management, Vol. 96, No. 5, 2009, pp. 831-838. doi:10.1016/j.agwat.2008.11.002
[52] F. Ewert, D. Rodriguez, P. Jamieson, M. A. Semenov, R. A. C. Mitchell, J. Goudriaan, J. R. Porter, B. A. Kimball, P. J. Jr. Pinter, R. Manderscheid, H. J. Weigel, A. Fangmeier, E. Fereres and F. Villalobos, “Effects of Elevated CO2 and Drought on Wheat: Testing Crop Simulation Models for Different Experimental and Climatic Conditions,” Agriculture, Ecosystems & Environment, Vol. 93, No. 1-3, 2002, pp. 249-266. doi:10.1016/S0167-8809(01)00352-8
[53] G. S. Mc Master and W. W. Wilhem, “Phenological Responses of Wheat and Barley to Water and Temperature: Improving Simulation Models,” The Journal of Agricultural Science, Vol. 141, No. 2, 2003, pp.129-147. doi:10.1017/S0021859603003460
[54] D. Desclaux and P. Roumet, “Impact of Drought Stress on the Phenology of Two Soybean (Glycine Max L. Merr) Cultivars,” Field Crops Research, Vol. 46, No. 1-3, 1996, pp. 61-70. doi:10.1016/0378-4290(95)00086-0

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.