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Introduction
Currently, the attention of Artificial Intelligent (IA) algorithms 

paradigm has shifted towards biological systems. This is due to the 
appealing characteristics exhibited by biological systems such as: co-
operative communication, adaptability, sophistication, robustness etc. 
[1]. These appealing characteristics of biological systems present an 
obvious motivation for several researchers to propose a mechanism of 
Natural Evolution (NE) in an attempt to model AI algorithms whose 
characteristics can be compared to the characteristics of biological 
systems. Some of these algorithms include: Particle Swarm Optimization 
(PSO) [2], Artificial Fish Swarm Algorithms (AFSA) [3], Bacterial 
Foraging Algorithm (BFA) [4], Artificial Bee Colony Algorithm (ABC) 
[5], Cultural Algorithm (CA) [6] etc. Researchers have explored 
the capabilities of these algorithms through various applications in 
engineering, science and social sciences. However, there is no known 
single AI algorithm capable of solving all optimization problems. This 
is because, in theory, every optimization problem can be approximately 
modelled into mimicking particle behaviour of biological system. Due 
to the diversification and intensification capabilities of AFSA, this 
research focus on developing some new variations of AFSA using CA 
knowledge, adaptive parameters and cell formation classification.

AFSA is an optimization algorithm which was developed using the 
intelligent behaviour of swarm of fish [7]. In water, fish can search for 
areas with more food either by its own searching ability or by intelligently 
following the searching ability of its companion fish. Perhaps, the areas 
with more fish are mainly the areas with the most nutrition [8]. AFSA has 
demonstrated some important characteristics such as high convergence 
rate, insensitivity to initial values, flexibility, ease of implementation, 
robustness and high fault tolerance [9-12]. The individual behaviour 
of the artificial fish is to search for local minima. This makes it difficult 
to move towards the global solution individually, especially when 
dealing with tough optimization problems in engineering and related 
discipline. This has led to several liabilities such as inability to search 
extensively at later stage, inability to maintain the balance of exploration 
and exploitation which has a significant effect on the searching ability of 
the algorithm [13,14]. Several researches have shown that, parameters 

like step size and visual distance have demonstrated profound influence 
on the performance of AFSA. For example, AFSA has strong global 
searching ability when the visual distance is large and strong local 
searching ability when the visual distance is low. Also, the bigger 
the step size, the faster the convergence speed and vice versa [7,15]. 
Selecting these parameters suitable for a particular optimization 
problem domain is therefore a challenge for researchers. It is interesting 
to note that several researchers have presented various modifications 
in other to combat some of these shortcomings [7,10,16-18]. However, 
these methods have only improved the performance but not completely 
address the highlighted problems. Thus, in this paper, an adaptive 
behaviour based inertial weight was used alongside cultural algorithm 
and cell formation classification to propose new variations of improved 
cultural artificial fish swarm algorithm (wCAFSA).

Cultural Algorithm is a computational model derived from the 
model of cultural evolution process [6]. CA provides an explicit 
mechanism for global knowledge and an effective structure within 
which to model self-adaptation in evolutionary computation (EC) 
systems [19]. Several researches have shown that, cultural based biology 
evolution algorithms performed much better when compared with the 
original biological evolution process [10,19-22]. Hence, this paper 
proposed new variations of improved AFSA using both Situational and 
Normative in CA. These new variations are called weighted Cultural 
Artificial Fish Swarm Algorithm (wCAFSA). The performance of 
wCAFSA was initially evaluated using a total of applied mathematical 
optimization test functions [23]. Thereafter, the wCAFSAs were used 
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to design an optimized PID controller for deep space antenna azimuth 
position.

The remainder of this paper is structured as follows. The 
fundamentals of AFSA and CA necessary to understand their basic 
concept is presented in section two. The procedure and all the relevant 
concept use in developing the CAFSA is presented in section three. 
Section four discusses briefly the test function used to evaluate the 
performance of each of the algorithms. The PID controller objective 
function formulation and it implementation using the wCAFSAs 
is presented in section five. Simulation and discussion of results is 
presented in section six and section seven contains the conclusion.

Artificial Fish Swarm and Cultural Algorithm
Artificial Fish Swarm Algorithm (AFSA)

Assuming a minimization problem having D-dimensional search 
space, the state vector of the AFSA swarm is initialized with N 
population of artificial fish such that, the position of one artificial fish 
can be formulated as: i i1 i2 i DX = (x ,x ,....,x )for.i = 1,2......N where Xi is the 
status of the fish. This represents the direct variable for the objective 
function under consideration [14]. The presence of food concentration 
in the position of fish is expressed as a fitness function iy = f(x ) . The 
visual distance between the artificial fish is i, j i jd = X - X , where i and 
j is a randomly generated fish. The step control parameter is the total 
number of the movement of artificial fish. The parameter δ is known as 
the degree of congestion (degree crowdedness). 

Preying: Preying is the fundamental biological behaviour of fish in 
water. Generally, the fish intelligently sees the region with more food in 
water by vision or sense and moves quickly towards this region.

Suppose the initial position of AF is Xi, the AF chooses a state 
randomly within its visual such that [14]:

j iX = X + rand(0,1) visual×                  (1)

Where Xj is the new state and Xi is the previous state

If j if(X ) f(X )<  in a minimization problem, it moves forward a 
step towards Xj in the following direction [23,24]:

(t) (t)
j i(t+1) (t)

i i (t) (t)
j i

X X
X = X + rand(0,1) step×

X X
−
−

×                 (2)

Where (t) (t) (t) (t)2 2
j i j iX - X = ((X ) (X ) )−  is the interval distance 

between artificial fish j and artificial fish i.

If j if(X ) f(X )> , the artificial fish again selects another state 
randomly as its new position. If the AF cannot find a feasible solution 
within a given time, it moves one step randomly as shown in eqn. (3) 
[7,11].

(t+1) (t)
i iX = X + rand(0,1) step×                   (3)

Swarming: In swarming, the fish will assemble and move in groups 
as a natural mechanism of guaranteeing their existence and avoiding 
danger. Suppose the present position of the artificial fish is Xi, and nf 
are the number of fellow AFs within a particular visual, which is equal 
to the number of elements in a set of i i jB = {X | d visual}≤ . If nf 0≠  
the set B isnot an empty set. Let Xc be the centre position and Yc the 

fitness of the centre position. Let 
nf

j
c

j

X
X =

nf∑  and c cY = f(X ) . If 

c inf Y Y ,δ× < ×  then this is not a crowded area. If Yc <Yi the AF moves a 

step in the direction of the companions’ centre position as follows [25].
( )( )

( 1) ( )
( )( )

(0,1)
tt

t t c i
i i tt

c i

X X
X X rand step

X X
+ −

= + × ×
−

                (4)

If swarming is not advantageous, the AFSA executes the preying 
behaviour. 

Chasing: When a fish finds food, neighbouring fish will trail and 
reach the food. Suppose the present position of the artificial fish is 
Xi, and Xm denotes the best artificial fish within Xi’s visual distance. 
The parameter nf is the number of  Xm‘s within the visual distance. 

m inf Y Yδ× < × , if Ym <Yi and m inf Y Yδ× < × , the artificial fish moves 
one step towards Xm [7,11,25]:

( )( )
( 1) ( )

( )( )
(0,1)

tt
t t m i

i i tt
m i

X X
X X rand step

X X
+ −

= + × ×
−

                (5)

If this is not advantageous, the AFSA also executes the behaviour of 
preying. Swarming influences few fish which confined in local extreme 
values to move in the direction of a few fishes moving towards the 
global extremum. Chasing accelerates AF movement towards a better 
state, and at the same time, speed up AF movement towards the best 
(global) extremum from the local extremum. 

Cultural Algorithm (CA)

In CA, experience of individuals selected from the general 
population by the acceptance function is employed to generate problem 
solving knowledge that dwells in the belief space [10,19]. The general 
framework of CA is given in Figure 1.

From Figure 1, it can be observed that CA consists of dual 
inheritance structures which are the population space and the belief 
space. In this paper, the population space is made up of individual 
members of artificial fish. While the belief space is made of the best 
individuals selected from the population using the influence function.

Acceptance function: The acceptance function selects individual 
members and their performances that have the capability to influence 
the forming of the present belief space [26,27]. In this paper, the total 
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Knowledge Update
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Evolution of Individuals
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Figure 1: Framework of cultural algorithm.



Citation: Salawudeen AT, Mu’azu BM, Sha’aban YA, Chan CJ (2017) Optimal Design of PID Controller for Deep Space Antenna Positioning Using 
Weighted Cultural Artificial Fish Swarm Algorithm. J Electr Electron Syst 6: 243. doi: 10.4172/2332-0796.1000243

Page 3 of 8

Volume 6 • Issue 4 • 1000243J Electr Electron Syst, an open access journal
ISSN: 2332-0796

number of individuals which were accepted for updating the belief 
space is obtained using the following equation: 

( , ) . . /af N t N N tβ β= +                     (6)

Where N is the population size, t is the current number of generation 
and β is chosen to be 0.2 (which means top 20% of the population) 
[10,19,22]. However, the entire population is selected at the beginning 
of the search processes and reduces to top 20% as the algorithm iterates.

Belief space structure: Five cultural knowledge have been 
identified in the belief space: Normative, Situational, Domain, History, 
and Topographical Knowledge [21]. In this paper, only normative and 
situational knowledge will be considered because they are deemed as 
fundamental for cultural evolution process. 

Situational knowledge: Situational knowledge leads individuals 
to move towards direction of the best exemplars [19] and is the best 
individuals found so far in the solution space. In this paper, the 
situational knowledge is initialized using the best AFSA individuals as 
follows:

1 2| { , ,..., } ,t t t t t t
nS E S S s s s= = =                   (7)

and is updated using:
1 1

, ,1 ( ) ( )
,

t t t
best j best jt

j t
j

X if f X f s
S

s otherwise

+ +
+

 <= 


                 (8)

Where S store the exemplars and E denote the exemplars themselves
1t

gbestX +  represents the artificial fish with the best fitness in the 
swarm at generation t+1.

Normative knowledge: Normative knowledge is provide a set of 
likely variable limits that provide acceptable standards for individual 
traits and guidelines which provides the information for individual 
adjustments [10,19,21,27]. The normative knowledge in the belief 
space, N, is formally updated as follows:

, , , ,N I U L D= 〈 〉                    (9)

where U, L and D, are n -dimensional vectors, and Ij denotes the 
restricted interval for variable j, which is, a continuous set of real 
numbers x delineated as follows:

{ }[ , ] |j j j j jI l u x l x u= = ≤ ≤                  (10)

lj and uj are the lower and upper bounds for the jth variable, 
respectively, Lj and Uj (which are usually initialized with positive 
infinity) are the values of the objective function of the lower (lj) and 
upper (uj). The left boundary and its score for parameter j is determined 
[10,19,21,27], the interval update rule is formulated as:

, ,1 ( )t t t t t
i j i j j i jt

j t
j

x if x l or f x L
l

l otherwise
+

 ≤ <= 


                  (11)

,1 ( ) ( )t t t t
i i j j i jt

j t
j

f X if x l or f x L
L

L otherwise
+

 ≤ <= 


                  (12) 

Where ith individual affects the lower bound for parameter j, t
jl  

represents the lower limit of parameter j at generation t and t
jL  denotes 

the fitness score of it. The right limits and the score for parameter j also 
determine as:

, ,1 ( )t t
k j k j j k jt

j t
j

x if x u or f x U
u

u otherwise
+

 ≥ <= 


               (13) 

,1 ( ) ( )t t
k k j j k jt

j t
j

f x if x u or f x U
U

U otherwise
+

 ≥ <= 


               (14)

Where kth artificial fish influence the upper bound for individual 
j. t

ju  represents the upper limit for variable j at generation t and t
jU  

denotes the performance score for it. Every other information on CA 
can be found [10,19,21,25,28].

Weighted Cultural Artificial Fish Swarm Algorithm 
(wCAFSA)

Since one of the major challenges of AFSA is the constant effects of 
its control parameters (visual, step and crowd). This paper introduced 
an iterative approach capable of appropriately selecting these parameters 
as follows

max min

max

n

w
w wVisual Visual

iter
 −

= ×   
 

                 (15)

max min

max

n

w
w wVisual Visual

iter
 −

= ×   
 

               (16)

Where

wmax and wwin is the minimum and maximum values of two randomly 
generated numbers, n is a factor of best and current individuals 
determined as follows:

gbest currentn
gbest current

−
=

+
                 (17)

Eqn. (12) is used to determine the contribution factor of the 
previous best individual to the individual at the present time step.

wCAFSA influence function

This paper presents five variants of the proposed weighted cultural 
artificial fish swarm algorithm (wCAFSA_Ns, wCAFSA_Sd, wCAFSA_
NsSd, wCAFSA_NsNd and wCAFSA_SSd). The influence functions for 
these variants are discussed as follows.

wCAFSA_Ns: This variant employ only normative knowledge to 
influence the step movement of wCAFSA during evolution.

Preying_Ns: A selection operator was first introduced to initialize 
the wCAFSA_Ns. This operator is given as follows

1 (0,1) ( )t t
i i i wX X rand size I Visual+ = + × ×                 (18)

Where ( )i i isize I u l= −  is the size of the belief space interval of 
ith parameter, which is determined by the normative knowledge for 
variable ith [10,19,21] and  r and (0,1) is a random variable generated 
with a mean of zero and a deviation of 1. The mathematical expression 
describing the preying behaviour of wCAFSA_Ns is given as follows:

1
1

1
( ) (0,1) ( )t t

t t k w ik ik
ik ik t t

i i

size I step rand x xx x
X X

+
+

+

× × × −
= +

−
                 (19)

Where ( )k k ksize I u l= −  the size of the belief space interval for the 
k parameter and is also decided by normative knowledge for kth variable. 

Swarming_Ns: The swarming behaviour of wCAFSA_Ns is 
described as follows.

1
1

( ) (0,1) ( )t t
t t k w ck ik
ik ik t t

c i

size I step rand x xx x
X X

+
+

× × × −
= +

−
                (20)

Where 
1

nf
j

c
j

X
X nf

=

=∑  is the centre position and nf is the number of 



Citation: Salawudeen AT, Mu’azu BM, Sha’aban YA, Chan CJ (2017) Optimal Design of PID Controller for Deep Space Antenna Positioning Using 
Weighted Cultural Artificial Fish Swarm Algorithm. J Electr Electron Syst 6: 243. doi: 10.4172/2332-0796.1000243

Page 4 of 8

Volume 6 • Issue 4 • 1000243J Electr Electron Syst, an open access journal
ISSN: 2332-0796

its fellow within the visual distance, xck is the centre position associated 
with the upper bound for variable j.

Chasing_Ns: The chasing behaviour in this variant is described as 
follows:

1 ( ) (0,1) ( )t t
t t k w mk ik
ik ik t t

m i

size I step rand x xx x
X X

+ × × −
= +

−
                (21)

Where Xm is the best artificial fish within Xi’s visual distance and nf 
is the total number of Xi’s fellows within the visual distance.

wCAFSA_Sd: In this variant, the situational knowledge is used to 
guide the direction of evolution of AFSA.

Preying _Sd: The preying behaviour of wCAFSA _Sd is described 
as follows:

( )

( )

( )

1
, ,

, ,1

1
, ,1

, , ,1

1
, ,

, 1

(0,1)

(0,1)

(0,1)

t t
w i k i kt t t

i k i k kt t
i i

t t
w i k i kt t t t

i k i k i k kt t
i i

t t
w i k i kt

i k t t
i i

Step rand x x
x if x E

X X

Step rand x x
x x if x E

X X

Step rand x x
x otherwise

X X

+

+

+
+

+

+

+

 × × − + <
−


 × × −= − >

−

 × × − +

−

Swarming _Sd: The swarming behaviour of the wCAFSA_Sd is as 

follows

( )

( )

( )

1
, ,

, ,1

1
, ,1

, , ,1

1
, ,

, 1

(0,1)

(0,1)

(0,1)

t t
w c k i kt t t

i k i k kt t
c i

t t
w c k i kt t t t

i k i k i k kt t
c i

t t
w c k i kt

i k t t
c i

Step rand x x
x if x E

X X

Step rand x x
x x if x E

X X

Step rand x x
x otherwise

X X

+

+

+
+

+

+

+

 × × − + <
−


 × × −= − >

−

 × × − +

−

   (22) 

Chasing _Sd: The chasing behaviour of the wCAFSA_Sd is 
described as follows:

( )

( )

( )

1
, ,

, ,1

1
, ,1
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1
, ,

, 1
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t t
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i k t t
m i

Step rand x x
x if x E

X X
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x x if x E

X X

Step rand x x
x otherwise

X X

+

+

+
+

+

+

+
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−


 × × −= − >

−

 × × − +

−

   (23)

wCAFSA_NsSd: In this variant, both the normative and situational 
knowledge are integrated. The normative knowledge is used to guide 
the step movement while the situational knowledge is used to influence 
the direction of evolution.

Preying_NsSd: The preying behaviour of this variant is given as follows

( )

( )

( )

1
, ,

, ,1

1
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1
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X X
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+
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+
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+

+
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  (24)

Swarming_NsSd: The swarming behaviour of this variant is 
presented as
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  (25)

Chasing_NsSd: The chasing behaviour of this variant is as follows
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  (26)

wCAFSA_NsNd: The Swarming behaviour of AFSA is modified 
using the normative knowledge to direct the step size as well as direction 
of evolution as follows:

Preying_NsNd: The Preying behaviour of AFSA is modified using 
normative knowledge as follows:
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Swarming_NsNd: The Chasing behaviour of AFSA is modified 
using the normative knowledge as follows:
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Chasing_NsNd: The Chasing behaviour of 
AFSA is modified using the normative knowledge as 
follows:
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  (29)

wCAFSA_Ssd: This variant use situational knowledge to guide 
both the step size and direction of evolution if formulated as follows:

Preying_Ssd: The preying behaviour of this variant is given as
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Swarming_Ssd
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Where t
kE  is the best exemplar parameter value of the situational 

knowledge for variable k in the belief space. If an individual’s parameter 
value is less than that of the current best, probably it would be better to 
go toward the current best. The present best individuals itself is mutated 
using a random direction, and is the otherwise case in all the equations.

Test Function Evaluation
Several test functions have been reported in the literature. However, 

there is no standard list or set of test functions one has to follow when 
choosing a subset for evaluating algorithm. Perhaps, any new or 
modified optimization algorithms should be tested using a collection of 
functions with diverse properties so as to verify the performance of the 
algorithm on different optimization problems efficiently [29]. In this 
paper, a total of seven mathematical nonlinear test functions are used 
to investigate the optimization capability of wCAFSA. These functions 
were selected due to their multimodality and its widespread usage. The 
functions adopted in this research include Ackley, Sphere, Levi and 
Montelvo, Rastrigin, Dejong Exponential and Schaffer [23,29,30].

Optimized PID Controller Design
In order to determine the efficiency of the wCAFSA, the algorithm 

was used to design an optimized PID controller for deep space 
antenna azimuth position control. The mathematical model and detail 
information of the armature DC servo motor controlling the antenna 
azimuth were adopted [31,32] follows:

 ( )
( ) ( ) 3 2

6.63
101.71 171 6.63

o

i

s KG s
s s s s K

θ
θ

= =
+ + +

                (32)

Where; K is the pre-amplifier gain.

The PID controller whose parameters are tuned by the wCAFSA 
was implemented using MATLAB R2015b simulation environment. 
The implementation procedure is discussed in the following section.

Objective function formulation

At the tuning stage, an objective function which is based on 
measured errors was formulated. Recall that the generalize equation of 
PID controller is [33-35],

 ( ) ( ) ( ) ( )
0

1 t
p d

i

de t
U t K e t e t dt T

T dt
= × + +∫                  (33)

Where; Kp is the proportional gain, Ti is the integral time, Td is the 
derivative time.

The tracking error which is the difference between the desired 
output and the actual output is represented bye(t). This error is sent 
to the PID controller and the controller compute its integral and 
derivative gains. The magnitude of the input signal from the controller 
is determined as follows [33,36]:

( ) ( ) ( )( )c p i dU t K e t K e t K e t= × + × + ×                   (34)

The objective function which is the PID performance criteria is 
formulated as a function of these errors (Integral Absolute Error-IAE, 
Integral of Time Square Error-ITSE and Integral of Square Error-ISE) 
as follow [36]:

 ( )
0 0

( ) ( )IAE r t y t dt e t dt
∞ ∞

= − =∫ ∫                 (35)

( )2

0
ISE e t dt

∞
= ∫                  (36)

( )2

0
.ISE t e t dt

∞
= ∫                   (37)

Eqn. (35-37) show a time domain representation of the errors. An 
optimized value of the PID controller gains can obtain good system 
behaviour capable of minimizing the performance criteria in the time 
domain.

wCAFSA implementation

The developed wCAFSA variants (wCAFSA_Ns, wCAFSA_Sd, 
wCAFSA_NsSd and wCAFSA_NsNd) were applied to the objective 
function discussed in subsection 4.3 with the aim of minimizing the 
performance criterion. The performance criterion includes: Overshoot 
of the system (OS), Rise Time (RT), Settling Time (ST), Steady State 
Error (SSE) and Cost function. It has been stated that, for a good 
controller design, these performance criterions specifically the OS and 
ST should be less than 20% and 20 seconds, respectively [33,37,38]. The 
block diagram representation of the proposed PID tuning method is 
shown in Figure 2.

Unlike the conventional method of tuning PID controller, wCAFSA 
method (which in this case are the PID gains) having unfavourable 
costs are discarded and those with favourable cost are retained in the 
searching process.
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The wCAFSA block in Figure 2, contain the variant under 
evaluation, this could be any of the four (4) variants presented in 
this paper. Each wCAFSA simulation consists of three artificial fishes 
(which are the PID gains- ,Kp Ki and Kd ). This means that, the search 
space consists of three dimensions and the artificial fishes must swarm 
in this three-dimensional space.

Simulation and Results
In order to demonstrate the effectiveness of the proposed tuning 

method, the responses of the system were analysed for two different 
preamplifier’s gains, K. However, the choice of this gain should be 
carefully made and should depend on the output performance of 
the system response. Based on this assertion, the paper evaluates the 
performance of the optimized PID controller under a preamplifier 
gain of 50 and 100 respectively. This choice is pearly the authors and is 
carefully made after series of simulation.

Simulation parameters

There are no known standard formats for the selection of the 
control parameters of the artificial fish swarm algorithm [7,14,18]. 
However, for the purpose of this paper the parameters shown in Table 
1 were employed.

Note that these parameters (except search dimension) can be varied 
under various simulations (PID gains) condition (Table 2). A search 
dimension of 40 was used when the performance of the developed 
wCAFSA algorithms were evaluated using the seven (7) benchmark 
functions. A search dimension of three (3), which corresponds to the 
PID gains, was used for the controller design [3,7,11,14].

Simulation results and discussion

The optimized results obtained for each of the amplifier gains are 
discussed in this subsection. For an amplifier gain of 50, the responses 
of the system and cost function minimization under a unity feedback 

are shown in Figures 3 and 4, respectively. The optimized PID controller 
gains and the steady state performance of the system are given in Table 3.

Figures 5 and 6 show the response of deep space antenna azimuth 
for an amplifier gain of 100. The steady state performance is detailed 
in Table 2.

From Table 3, it can be observed that, the performance of the 
system when the wCAFSA_NsSd based PID controller is used under 
an amplifier gain of 50 performed much better in terms of overshoot 
(0.3788%) and settling time (2.3876sec) which are shown in bold 
italics. Similarly, for an amplifier gain of 100, the wCAFSA_NsSd also 
performed much better in terms of overshoot but wCAFSA_NsNd 
performed better in settling time (2.1366sec) in this case which is shown 
in bold. In general, the performance of the system under an amplifier 
gain of 50 is much better when compared to the performance of the 
system under an amplifier gain of 100. Even though the wCAFSA_NsSd 
based PID controller performed better than the other variants, the 
performance of all the other variants can also be considered efficient 
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_
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Input Output

Amplifier Gain

K

Objective Function

PID Controller

K
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K
i

K
d

Figure 2: Implementation of system using PID Controller.

SN Parameters Value
1 Population of Fish 80
2 Search Dimension 40; 3
3 Visual Distance 5
4 Step Size 0.75
5 Crowd Factor 0.25
6 Number of Iteration 100
7 Preamplifier Gain (K) 50, 100

Table 1: Simulation parameters.
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and acceptable having settling time of less than 5 second and overshoot 
of less than 5%. The details of the results can be found in Table 3.

Conclusion and Future Work
This paper has presented a modified AFSA using the situational 

and normative knowledge inherent in cultural evolution process. Four 
variations using different configurations of the two knowledge were 
developed. The performance of the developed algorithm variants was 
evaluated using a total of seven (7) mathematical optimization test 
functions. The developed variants were used to design an optimized 
PID controller for deep space antenna azimuth positioning control. 
Simulation results demonstrate the efficiency of the proposed 
algorithms in determining the PID controller gains. The performance 
of the developed algorithms when applied to more complex models and 
the development of variations of the algorithm (using other forms of 
cultural knowledge) are the subjects of on-going research.   
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