We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Small-molecule oligonucleotides as smart modality for antiviral therapy: a medicinal chemistry perspective

    Sidhartha S Kar

    Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha, 754202, India

    ,
    Arghya Kusum Dhar

    *Author for correspondence:

    E-mail Address: dhararghyakusum@gmail.com

    School of Pharmacy, The Neotia University, Sarisa, D.H. Road, 24 Pgs (South) West Bengal, 743368, India

    ,
    Narahari N Palei

    Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India

    &
    Shvetank Bhatt

    School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India

    Published Online:https://doi.org/10.4155/fmc-2023-0091

    Small-molecule oligonucleotides could be exploited therapeutically to silence the expression of viral infection-causing genes, and a few of them are now in clinical trials for the management of viral infections. The most challenging aspect of these oligonucleotides’ therapeutic success involves their delivery. Thus medicinal chemistry strategies are inevitable to avoid degradation by serum nucleases, avoid kidney clearance and improve cellular uptake. Recently small-molecule oligonucleotide design has opened up new avenues to improve the treatment of drug-resistant viral infections, along with the development of COVID-19 medicines. This review is directed toward the recent advances in rational design, mechanism of action, structure–activity relationships and future perspective of the small-molecule oligonucleotides targeting viral infections, including COVID-19.

    Tweetable abstract

    Small-molecule oligonucleotides as antiviral agents.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Mescalchin A, Restle T. Oligomeric nucleic acids as antivirals. Molecules 16 (2), 1271–1296 (2011).
    • 2. Sarafianos SG, Das K, Hughes SH, Arnold E. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Curr. Opin. Struct. Biol. 14(6), 716–730 (2004).
    • 3. Carr A. Toxicity of antiretroviral therapy and implications for drug development. Nat. Rev. Drug Discov. 2(8), 624–634 (2003).
    • 4. Pinti M, Salomoni P, Cossarizza A. Anti-HIV drugs and the mitochondria. Biochim. Biophys. Acta 1757(5–6), 700–707 (2006).
    • 5. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, (10) 673–694 (2020).
    • 6. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl Acad. Sci. USA 75(1), 280–284 (1978).
    • 7. Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44 (14), 6518–6548 (2016).
    • 8. Lu X, Zhang K. PEGylation of therapeutic oligonucleotides: from linear to highly branched PEG architectures. Nano Res. 11(10), 5519–5534 (2018). • Highly branched polyethylene glycol (PEG; brush, star and micellar structures) excels in cellular absorption, gene regulation efficiency, side effect mitigation and biodistribution. PEG architecture affects the physiochemical and biological characteristics of PEGylated oligonucleotides.
    • 9. Blank M, Blind M. Aptamers as tools for target validation. Curr. Opin. Chem. Biol. 9(4), 336–342 (2005).
    • 10. Nimjee SM, Rusconi CP, Sullenger BA. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56, 555–558 (2005).
    • 11. Gopinath SCB. Antiviral aptamers. Arch. Virol. 152(12), 2137–2157 (2007).
    • 12. Pan QW, Henry SD, Scholte BJ, Tilanus HW, Janssen HL, Van der Laan LJ. New therapeutic opportunities for hepatitis C based on small RNA. World J. Gastroenterol. 13(33), 4431–4436 (2007).
    • 13. Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).
    • 14. Sahu NK, Shilakari G, Nayak A, Kohli DV. Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr. Pharm. Biotechnol. 8(5), 291–304 (2007).
    • 15. Pan WH, Clawson GA. Identifying accessible sites in RNA: the first step in designing antisense reagents. Curr. Med. Chem. 13(25), 3083–3103 (2006).
    • 16. Far RK, Leppert J, Frank K, Sczakiel G. Technical improvements in the computational target search for antisense oligonucleotides. Oligonucleotides 15(3), 223–233 (2005).
    • 17. Schubert S, Kurreck J. Oligonucleotide-based antiviral strategies. Handb. Exp. Pharmacol. 173(173), 261–287 (2006).
    • 18. Arzumanov A, Walsh AP, Rajwanshi VK, Kumar R, Wengel J, Gait MJ. Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides. Biochemistry 40(48), 14645–14654 (2001).
    • 19. Elmen J, Zhang HY, Zuber B et al. Locked nucleic acids containing antisense oligonucleotides enhance the inhibition of HIV-1 genome dimerization and inhibit virus replication. FEBS Lett. 578 (3), 285–290 (2004).
    • 20. Matzen K, Elzaouk L, Matskevich AA, Nitzsche A, Heinrich J, Moelling K. RNase H mediated retrovirus destruction in vivo triggered by oligodeoxynucleotides. Nat. Biotechnol. 25(6), 669–674 (2007).
    • 21. Warren TK, Warfield KL, Wells J et al. Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat. Med. 16(9), 991–994 (2010).
    • 22. Yuan J, Cheung PKM, Zhang H et al. A phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts. Lab. Invest. 84(6), 703–714 (2004).
    • 23. Witherell GW. ISIS-14803 (Isis Pharmaceuticals). Curr. Opin. Invest. Drugs 3(2), 1523–1529 (2001).
    • 24. Nan Y, Zhang YJ. Antisense phosphorodiamidate morpholino oligomers as novel antiviral compounds. Front. Microbiol. 20(9), 750 (2018). •• Phosphorodiamidate morpholino oligomers (PMOs) are short ssDNA analogs made of morpholine rings connected by phosphorodiamidate. PMO, non-charged nucleic acids, can sterically block protein translation via Watson–Crick base pairing with a target mRNA’s complementary sequences. PMOs withstand numerous enzymes in biological fluids, making them excellent for use in living organisms.
    • 25. Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev. 7(3), 187–195 (1997).
    • 26. Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res. 45(5), 2262–2282 (2017).
    • 27. Iversen PL, Warren TK, Wells JB et al. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 4(11), 2806–2830 (2012).
    • 28. Burrer R, Neuman BW, Ting JP et al. Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J. Virol. 81(11), 5637–5648 (2007).
    • 29. Anantpadma M, Stein DA, Vrati S. Inhibition of Japanese encephalitis virus replication in cultured cells and mice by a peptide-conjugated morpholino oligomer. J. Antimicrob. Chemother. 65(5), 953–961 (2010).
    • 30. Lam S, Chen H, Chen CK, Min N, Chu JJ. Antiviral phosphorodiamidate morpholino oligomers are protective against Chikungunya virus infection on cell-based and murine models. Sci. Rep. 5, 12727, (2015).
    • 31. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818–822 (1990).
    • 32. Cerchia L, De Franciscis V. Noncoding RNAs in cancer medicine. J. Biomed. Biotechnol. 2006(4), 73104 (2006).
    • 33. Herranz AB, López CR. Two examples of RNA aptamers with antiviral activity. Are aptamers the wished antiviral drugs? Pharmaceuticals 13(8), 157 (2020). • Describes two RNA aptamers that inhibit HIV-1 and hepatitis C virus RNA genomes by targeting highly conserved structural areas. This work demonstrates the anti-RNA virus therapeutic potential of aptamers.
    • 34. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990).
    • 35. Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens. Bioelectron. 20(12), 2424–2434 (2005).
    • 36. Odeh F, Nsairat H, Alshaer W et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules 25(1), 3 (2019). •• Discusses recent developments in aptamer chemistry, particularly chemical alterations improving the pharmacological properties of aptamers, along with the pros and cons of these modifications. Conjugation techniques of aptamers to nanocarriers for building tailored drug delivery systems are described.
    • 37. Patel DJ, Suri AK. Structure, recognition and discrimination in RNA aptamer complexes with cofactors, amino acids, drugs, and aminoglycoside antibiotics. J. Biotechnol. 74(1), 39–60 (2000).
    • 38. Kim TH, Lee SW. Aptamers for anti-viral therapeutics and diagnostics. Int. J. Mol. Sci. 22(8), 4168 (2021).
    • 39. Zhu Q, Shibata T, Kabashima T, Kai M. Inhibition of HIV-1 protease expression in T cells owing to a DNA aptamer-mediated specific delivery of siRNA. Eur. J. Med. Chem. 56, 396–399 (2012).
    • 40. Cohen C, Forzan M, Sproat B et al. An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site. Virology 381(1), 46–54 (2008).
    • 41. Chen F, Hu Y, Li D, Chen H, Zhang XL. CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2. PLOS ONE 4(12), e8142, (2009).
    • 42. Jeon SH, Kayhan B, Ben-Yedidia T, Arnon R. A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J. Biol. Chem. 279(46), 48410–48419 (2004).
    • 43. Wang J, Jiang H, Liu F. In vitro selection of novel RNA ligands that bind human cytomegalovirus and block viral infection. RNA 6(4), 571–583 (2000).
    • 44. Gopinath SCB, Hayashi K, Kumar PKR. Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J. Virol. 86(12), 6732–6744 (2012).
    • 45. Biroccio A, Hamm J, Incitti I, De Francesco R, Tomei L. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76(8), 3688–3696 (2002).
    • 46. Kanai A, Tanabe K, Kohara M. Poly (U) binding activity of hepatitis C virus NS3 protein, a putative RNA helicase. FEBS Lett. 376(3), 221–224 (1995).
    • 47. Umehara T, Fukuda K, Nishikawa F et al. Designing and analysis of potent bi-functional aptamers that inhibit protease and helicase activities of HCV NS3. Nucleic Acids Symp. Ser. (Oxf.) 48, 195–196 (2004).
    • 48. Jang KJ, Lee NR, Yeo WS, Jeong YJ, Kim DE. Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase. Biochem. Biophys. Res. Commun. 366(3), 738–744 (2008).
    • 49. Konno K, Fujita S, Iizuka M, Nishikawa S, Hasegawa T, Fukuda K. Isolation and characterization of RNA aptamers specific for the HCV Minus-IRES domain I. Nucleic Acids Symp. Ser. (Oxf.) 52, 493–494 (2008).
    • 50. Romero-López C, Berzal-Herranz B, Gómez J, Berzal-Herranz A. An engineered inhibitor RNA that efficiently interferes with hepatitis C virus translation and replication. Antiviral Res. 94(2), 131–138 (2012).
    • 51. Liu J, Yang Y, Hu B, Ma ZY et al. Development of HBsAg-binding aptamers that bind HepG2. 2.15 cells via HBV surface antigen. Virol. Sin. 25(1), 27–35 (2010).
    • 52. Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol. Ther. 16(8), 1481–1489 (2008).
    • 53. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1), 147–157 (1982).
    • 54. Chen X, Li N, Ellington AD. Ribozyme catalysis of metabolism in th.e RNA world. Chem. Biodivers. 4(4), 633–655 (2007).
    • 55. Benitez-Hess M, Alvarez-Salas L. Utilization of ribozymes as antiviral agents. Lett. Drug. Des. Discov. 3(6), 390–404 (2006).
    • 56. Peracchi A. Prospects for antiviral ribozymes and deoxyribozymes. Rev. Med. Virol. 14(1), 47–64 (2004).
    • 57. Butcher SE, Burke JM. Structure-mapping of the hairpin ribozyme: magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. J. Mol. Biol. 244(1), 52–63 (1994).
    • 58. Lu D, Chatterjee S, Brar D, Wong KK Jr. Ribozyme-mediated in vitro cleavage of transcripts arising from the major transforming genes of human papillomavirus type 16. Cancer Gene Ther. 1 (4), 267–277 (1994).
    • 59. Alvarez-Salas LM, Cullinan AE, Siwkowski A, Hampel A, Dipaolo JA. Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc. Natl Acad. Sci. USA 95(3), 1189–1194 (1998).
    • 60. Mitsuyasu RT, Merigan TC, Carr A et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat. Med. 15(3), 285–292 (2009).
    • 61. Ojwang JO, Hampel A, Looney DJ, Wong-Staal F, Rappaport J. Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc. Natl Acad. Sci. USA 89(22), 10802–10806 (1992).
    • 62. Nash KL, Alexander GJM, Lever AML. Inhibition of hepatitis B virus by lentiviral vector delivered antisense RNA and hammerhead ribozymes. J. Viral Hepat. 12(4), 346–356 (2005).
    • 63. Breaker RR. DNA enzymes. Nat. Biotechnol. 15, 427–431 (1997).
    • 64. Warashina M, Kuwabara T, Nakamatsu Y, Taira K. Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem. Biol. 6(4), 237–250 (1999).
    • 65. Dass CR, Saravolac EG, Li Y, Sun LQ. Cellular uptake, distribution, and stability of 10–23 deoxy ribozymes. Antisense Nucleic Acid Drug Dev. 12(5), 289–299 (2002).
    • 66. Zhou J, Yang XQ, Xie YY et al. Inhibition of respiratory syncytial virus of subgroups A and B using deoxyribozyme DZ1133 in mice. Virus Res. 130(1–2), 241–248 (2007).
    • 67. Imai M, Watanabe S, Ninomiya A, Obuchi M, Odagiri T. Influenza B virus BM2 protein is a crucial component for incorporation of viral ribonucleoprotein complex into virions during virus assembly. J. Virol. 78(20), 11007–11015 (2004).
    • 68. Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell. Mol. Life Sci. 77(24), 5045–5058 (2020).
    • 69. Muhammad T, Zhang F, Zhang Y, Liang Y. RNA interference: a natural immune system of plants to counteract biotic stressors. Cells 8(1), 38 (2019).
    • 70. Torrecilla J, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. Biomed. Res. Int. 2014, 161794 (2014).
    • 71. Zarnore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 309 (5740), 1519–1524 (2005).
    • 72. Takahashi Y, Sato K, Wada T. Solid-phase synthesis of boranophosphate/phosphorothioate/phosphate chimeric oligonucleotides and their potential as antisense oligonucleotides. J. Org. Chem. 87(6), 3895–3909 (2022). •• Describes the synthesis of chimeric oligonucleotides with organophosphate, phosphorothioate and phosphate as antisense oligonucleotides (ASOs). Synthesized chimeric oligonucleotides were tested for physiological and biological features. According to these, effective ASOs must have duplex stability, nuclease resistance, RNase H-inducing ability and one-base mismatch discrimination. P-modification and sugar modification at appropriate places of oligonucleotides can govern these properties.
    • 73. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens 9(3),231 (2020).
    • 74. Sharma A, Tiwari S, Deb MK, Marty JL. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents 56(2), 106054 (2020).
    • 75. Verma NV, Fazil MHUT, Duggan SP, Kelleher D. Combination therapy using inhalable GapmeR and recombinant ACE2 for COVID-19. Front. Mol. Biosci. 7, 197 (2020).
    • 76. Song Y, Song J, Wei X et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92(14),9895–9900 (2020). •• Researchers found SARS-CoV-2 receptor-binding domain-binding aptamers using a machine learning screening approach and ACE2 competition-based aptamer selection. The optimized CoV2-RBD-1C and CoV2-RBD-4C aptamers had RBD Kd values of 5.8 and 19.9nM, respectively. According to competitive experiments and simulated interaction model, two aptamers may share binding sites at ACE2 on SARS-CoV-2 RBD. These aptamers can create new probes for SARS-CoV-2, which could aid in diagnosis, treatment and infection mechanism research.
    • 77. Zhang L, Fang X, Liu X et al. Discovery of sandwich-type COVID-19 nucleocapsid protein DNA aptamers. Chem. Commun. 56, 10235–10238 (2020).
    • 78. Khanali J, Khyavy MA, Asaadi Y, Jamalkhah M, Kiani J. Nucleic acid-based treatments against COVID-19: potential efficacy of aptamers and siRNAs. Front. Microbiol. 12, 758948 (2021). • Explores the problems involved in applying aptamers, siRNAs and aptamer–siRNA chimeras to combat SARS-CoV-2, and analyzes the relevant literature to determine whether this approach is feasible.
    • 79. Wagner A, Bock CT, Fechner H, Kurreck J. Application of modified antisense oligonucleotides and siRNAs as antiviral drugs. Future Med. Chem. 7(13), 1637–1642 (2015).
    • 80. Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19(10), 673–694 (2020). •• Describes the limitations of oligonucleotides and the challenges of developing oligonucleotide-based therapeutics. Strategies to overcome the challenges are also explained. Various medicinal chemistry approaches (e.g., backbone modification, ribose sugar modifications) and delivery methods of oligonucleotides are described.
    • 81. Kranz LM, Diken M, Haas H et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607), 396–401 (2016).
    • 82. Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in Antiviral Therapy. Antimicrobial Nanoarchitectonics 2017, 383–410 (2017).
    • 83. Sivakumar P, Kim S, Kang HC, Shim MS. Targeted siRNAdelivery using aptamer-siRNA chimeras and aptamer-conjugated nanoparticles. Wiley Interdiscip Rev Nanomed. Nanobiotechnol. 11(3), e1543 (2019).
    • 84. Guo N, Liu J, Li W, Ma Y S, Fu D. The power and the promiseof CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv. Res. 40, 135–152 (2022).
    • 85. Gostimskaya I. CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry (Mosc). 87(8), 777–788 (2022).