We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Novel diamides inspired by protein kinase inhibitors as anti-Trypanosoma cruzi agents: in vitro and in vivo evaluations

    Fernanda Karoline Vieira da Silva Torchelsen

    Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    ,
    Tamiles Caroline Fernandes Pedrosa

    Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    ,
    Michelle Peixoto Rodrigues

    Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil

    ,
    Alex Ramos de Aguiar

    Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil

    ,
    Fabrício Marques de Oliveira

    Instituto Federal de Educação de Minas Gerais, Ouro Branco, Minas Gerais, 36420-000, Brazil

    ,
    Giovanni Wilson Amarante

    Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil

    ,
    Policarpo Ademar Sales-Junior

    Centro de Pesquisas René-Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-009, Brazil

    ,
    Renata Tupinambá Branquinho

    Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    ,
    Sirlaine Pio Gomes da Silva

    Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    ,
    André Talvani

    Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    Programa de pós-graduação em Saúde e Nutrição, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    ,
    Silvane Maria Fonseca Murta

    Centro de Pesquisas René-Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-009, Brazil

    ,
    Felipe Terra Martins

    Departamento de Química, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil

    ,
    Rodrigo Ligabue Braun

    Departamento de Ciências Farmacêuticas, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil

    ,
    Róbson Ricardo Teixeira

    Departamento de Química, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 30130-171, Brazil

    ,
    Vanessa Carla Furtado Mosqueira

    Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    &
    Marta de Lana

    *Author for correspondence:

    E-mail Address: delana@ufop.edu.br

    Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil

    Published Online:https://doi.org/10.4155/fmc-2023-0090

    Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results:3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruziin vitro and in vivo.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem. Inst. Oswaldo Cruz 1, 159–218 (1909).
    • 2. WHO. Chagas disease (American trypanosomiasis). (2021). www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (Accessed 13 April 2022).
    • 3. Pan American Health Organization. Chagas in the Americas for public health workers (2022). www.paho.org/en/documents/factsheet-chagas-disease-americas-public-health-workers (Accessed 10 January 2023).
    • 4. Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Tropica 115, 14–20 (2010).
    • 5. Monge-Maillo B, López-Vélez R. Challenges in the management of Chagas disease in Latin-American migrants in Europe. Clin. Microbiol. Infect. 23, 290–295 (2017).
    • 6. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect. Dis. 13, 342–348 (2013).
    • 7. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 375, 1388–1402 (2010).
    • 8. Coura JR, de Castro SL. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 97, 3–24 (2002).
    • 9. Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev. Soc. Bras. Med. Trop. 40, 1–10 (2007).
    • 10. Dias JC, Ramos AN Jr, Gontijo ED et al. II Consenso Brasileiro em Doença de Chagas. Epidemiol. Serv. Saude 25, 7–86 (2015).
    • 11. Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis. 1(2), 92–100 (2001).
    • 12. Castro JA, Mecca MM, Bartel LC. Toxic side effects of drugs used to treat Chagas' disease (American trypanosomiasis). Hum. Exp. Toxicol. 25, 471–479 (2006).
    • 13. Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans. R Soc. Trop. Med. Hyg. 81(5), 755–759 (1987).
    • 14. Zingales B, Miles MA, Moraes CB et al. Drugs for Neglected Disease Initiative, Chagas Clinical Research Platform Meeting, drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem. Inst. Oswaldo Cruz 109, 828–833 (2014).
    • 15. Murta SM, Gazzinelli RT, Brener Z, Romanha AJ. Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol. Biol. Parasitol. 93, 203–214 (1998).
    • 16. Chatelain E. Chagas disease drug discovery: toward a new era. J. Biomol. Screen. 20, 22–35 (2015). • Provides a review of the motivation for the current search for new trypanocidal compounds.
    • 17. Silva ACC, Brelaz-de-Castro MCA, Leite ACL, Pereira VRA, Hernandes MZ. Chagas disease treatment and rational drug discovery: a challenge that remains. Front. Pharmacol. 10, 873 (2019).
    • 18. Mazzeti AL, Oliveira LT, Gonçalves KR, Schaun GC, Mosqueira VCF, Bahia MT. Benznidazole self-emulsifying delivery system: a novel alternative dosage form for Chagas disease treatment. Eur. J. Pharm. Sci. 145, doi: 10.1016/j.ejps.2020.105234 (2020).
    • 19. Izumi E, Ueda-Nakamura T, Dias Filho BP, Veiga VF Jr, Nakamura CV. Natural products and Chagas' disease: a review of plant compounds studied for activity against Trypanosoma cruzi. Nat. Prod. Rep. 28, 809–823 (2011).
    • 20. Drug for Neglected Diseases Initiative. Open Synthesis Network, Open Inovation Factsheet (2018). https://dndi.org/wp-content/uploads/2018/10/OSN_2018 (Accessed 30 May 2022).
    • 21. Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discover. Expert. Opin. Drug Discov. 14, 1161–1174 (2019).
    • 22. Bellera C, Sbaraglini M, Balcazar D et al. High-throughput drug repositioning for the discovery of new treatments for Chagas disease. Mini Rev. Med. Chem. 15, 182–193 (2015).
    • 23. Mosqueira VCF, Mazzeti AL, Bahia MT. Nanomedicines against Chagas disease. In: Applications of Nanobiotechnology for Neglected Tropical Diseases. Formiga FRInamuddinSeverino P (Eds). Academic Press, Amstedam, The Netherlands, 169–189 (2021).
    • 24. Alliance of Genome Resources. Srpk1 Mus Musculus (2022). www.alliancegenome.org/gene/MGI:106908 (Accessed 30 October 2022).
    • 25. Sharma V, Sharma PC, Kumar V. A mini review on pyridoacridines: prospective lead compounds in medicinal chemistry. J. Adv. Res. 6, 63–71 (2015).
    • 26. Fu XD. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365, 82–85 (1993).
    • 27. Parsons M, Worthey EA, Ward PN, Mottram JC. Comparative analysis of the kinomes of three pathogenic trypanosomatids: leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genom. 6, 127 (2015).
    • 28. Zhou Z, Qiu J, Liu W et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell. 47, 422–433 (2012).
    • 29. Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J. 278, 570–586 (2011).
    • 30. Portal D, Lobo GS, Kadener S et al. Trypanosoma cruzi TcSRPK, the first protozoan member of the SRPK family, is biochemically and functionally conserved with metazoan SR protein-specific kinases. Mol. Biochem. Parasitol. 127, 9–21 (2003). • Provides data on the role of TcSRPK in the Trypanosoma cruzi life cycle and infection, which supports the current work's pursuit of SRPK inhibition as a trypanocidal mechanism for new active compounds.
    • 31. Vieira M, Carvalho TU, Cunha NL, de Souza W. Effect of protein kinase inhibitors on the invasion process of macrophages by Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 203, 967–971 (1994).
    • 32. Vieira M, Dutra JM, Carvalho TM, Cunha-E-Silva NL, Souto-Padrón T, de Souza W. Cellular signaling during the macrophage invasion by Trypanosoma cruzi. Histochem. Cell Biol. 118, 491–500 (2002).
    • 33. Todorov AG, Einicker-Lamas M, de Castro LS, Oliveira MM, Guilherme A. Activation of host cell phosphatidylinositol 3-kinases by Trypanosoma cruzi infection. J. Biol. Chem. 275, 32182–32186 (2000).
    • 34. Braga MV, de Souza W. Effects of protein kinase and phosphatidylinositol-3 kinase inhibitors on growth and ultrastructure of Trypanosoma cruzi. FEMS Microbiol. Lett. 256, 209–216 (2006).
    • 35. Fukuhara T, Hosoya T, Shimizu S et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc. Natl Acad. Sci. 103, 11329–11333 (2006).
    • 36. Karakama Y, Sakamoto N, Itsui Y et al. Watanabe, inhibition of hepatitis C virus replication by a specific inhibitor of serine-arginine-rich protein kinase. Antimicrob. Agents Chemother. 54, 3179–3186 (2010).
    • 37. Gammons MVR, Dick AD, Harper SJ, Bates DO. SRPK1 inhibition modulates VEGF splicing to reduce pathological neovascularization in a rat model of retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 54, 5797–5806 (2013).
    • 38. Gammons MVR, Lucas R, Dean R, Coupland SE, Oltean S, Bates DO. Targeting SRPK1 to control VEGF-mediated tumour angiogenesis in metastatic melanoma. Br. J. Cancer 111, 477–485 (2014).
    • 39. Mavrou A, Brakspear K, Hamdollah-Zadeh M et al. Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene 34, 4311–4319 (2015).
    • 40. Huang J, Zhou Y, Xue X et al. SRPIN340 protects heart muscle from oxidative damage via SRPK1/2 inhibition mediated AKT activation. Biochem. Biophys. Res. Commun. 510, 97–103 (2015).
    • 41. Álvarez G, Varela J, Cruces E et al. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas' disease. Antimicrob. Agents Chemother. 59, 1398–1404 (2015).
    • 42. Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Szular J, Kaiser M. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compound. Eur. J. Med. Chem. 117, 179–186 (2016).
    • 43. Acosta-guzmán P, Mateus-gómez A, Gamba-Sánchez D. Direct transamidation reactions: mechanism and recent advances. Molecules 23, 2382 (2018).
    • 44. Renuka MK, Gayathri V. Synthesis of secondary amides by direct amidation using polymer supported copper (II) complex. Polyhedron 148, 195–202 (2018).
    • 45. Bruker AXS Inc. WI, USA (2015).
    • 46. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr. 71(Pt. 1), 3–8 (2015).
    • 47. Farrugia JJ. WinGX and ORTEP for Windows: an update. Appl. Crystallogr. 45, 849–854 (2012).
    • 48. Romanha AJ, de Castro SL, Soeiro MNC et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Inst. Oswaldo Cruz 105, 233–238 (2010). • The strains and trypanocidal evaluations presented here are based on Romanha's screening protocol.
    • 49. Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 40, 2592–2597 (1996).
    • 50. Sales Júnior PA, Rezende Júnior CO, Le Hyaric M, Almeida MV, Romanha AJ. The in vitro activity of fatty diamines and amino alcohols against mixed amastigote and trypomastigote Trypanosoma cruzi forms. Mem. Inst. Oswaldo Cruz 109, 362–364 (2014).
    • 51. Rolón M, Vega C, Escario JA, Gómez-Barrio A. Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol. Res. 99(2), 103–107 (2006).
    • 52. Riss TL, Moravec RA, Niles AL et al. Cytotoxicity Assays: In Vitro Methods to MeasureDead Cells.In: Assay Guidance Manual. Markossian SGrossman ABrimacombe K et al. (Eds). Eli Lilly & Company and the National Center for Advancing Translational Sciences, MD, USA (2004).
    • 53. Bartosh TJ, Ylostalo JH. Macrophage inflammatory assay. Bio. Protoc. 4(14), e1108 (2014).
    • 54. Alexander KS, Millalos R. Canola oil: pharmaceutical excipients. In: Handbook of Pharmaceutical Excipients. Rowe RCSheskey PJQuinn ME (Eds). Pharmaceutical Press and American Pharmacists Association, London, England and IL, USA (2009).
    • 55. Veloso VM, Carneiro CM, Toledo MJ et al. Variation in susceptibility to benznidazole in isolates derived from Trypanosoma cruzi parental strains. Mem. Instit. Oswaldo Cruz 96, 1005–1011 (2001).
    • 56. Brener Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev. Inst. Med. Trop. 4, 389–396 (1962).
    • 57. Agoni C, Olotu FA, Ramharack P, Soliman ME. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? J. Mol. Model. 26(6), 120 (2020).
    • 58. Varadi M, Anyango S, Deshpande M et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, 439–444 (2022).
    • 59. Guedes IA, Costa LSC, Dos Santos KB et al. Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci. Rep. 11, 5543 (2021).
    • 60. Pereira AA, de Castro PP, de Melo AC, Ferreira BV, Eberlin MN, Amarante GW. Brønsted acid catalyzed azlactone ring opening by nucleophiles. Tetrahedron 70, 3271–3275 (2014).
    • 61. Siqueira RP, Barros MVA, Barbosa EAA et al. Trifluoromethyl arylamides with antileukemia effect and intracellular inhibitory activity over serine/arginine-rich protein kinases (SRPKs). Eur. J. Med. Chem. 134, 97–109 (2017). • Describes the method used to synthesize the compounds presented in the current work.
    • 62. Canavaci AM, Bustamante JM, Padilla AM et al. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLOS ONE Negl. Trop. Dis. 4(7), e740 (2010).
    • 63. Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12, 12347–12360 (2012).
    • 64. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100(2), 171–194 (2003).
    • 65. Salvador F, Sánchez-Montalvá A, Martínez-Gallo M et al. Serum IL-10 levels and its relationship with parasitemia in chronic Chagas disease patients. Am. J. Trop. Med. Hyg. 102(1), 159–163 (2020).
    • 66. Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 58, 4066–4072 (2015).
    • 67. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43(20), 3714–3717 (2000).
    • 68. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).
    • 69. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45(12), 2615–2623 (2002).
    • 70. Giménez BG, Santos MS, Ferrarini M, Fernandes JP. Evaluation of blockbuster drugs under the rule-of-five. Pharmazie 65(2), 148–152 (2010).
    • 71. Berger BJ, Fairlamb AH. Interactions between immunity and chemotherapy in the treatment of the trypanosomiases and leishmaniases. Parasitology 105, 871–878 (1992).
    • 72. Murta SM, Ropert C, Alves RO, Gazzinelli RT, Romanha JA. In vivo treatment with benznidazole enhances phagocytosis, parasite destruction and cytokine release by macrophages during infection with a drug-susceptible but not with a derived drug-resistant. Parasite Immunol. 21, 535–544 (1999).
    • 73. Romanha AJ, Alves RO, Murta SM, Silva JS, Ropert C, Gazzinelli RT. Experimental chemotherapy against Trypanosoma cruzi infection: essential role of endogenous interferon-γ in mediating parasitologic cure. J. Infect. Dis. 186, 823–828 (2002).
    • 74. Falkowski-Temporini GJ, Lopes CR, Massini PF et al. Predominance of Th1 response, increase of megakaryocytes and Kupffer cells are related to survival in Trypanosoma cruzi infected mice treated with lycopodium clavatum. Cytokine 88, 57–61 (2016).
    • 75. Pupulin ÁRT, Bracht L, de Oliveira Dalalio MM et al. Canova medication changes TNF-α and IL-10 serum levels in mice infected with Trypanosoma cruzi Y strain. Asian Pac. J. Trop. Med. 9, 860–865 (2016).
    • 76. Gatto M, Oliveira LRC, De Nuzzi Dias F et al. Benznidazole affects expression of Th1, Th17 and Treg cytokines during acute experimental Trypanosoma cruzi infection. J. Venom. Anim. Toxins Incl. Trop. Dis. 12, 23–47 (2017).
    • 77. Alliance of Genome Resources. Srpk1 Mus Musculus (2022). www.alliancegenome.org/gene/MGI:106908 (Accessed 30 October 2022).
    • 78. Siqueira RP, Barbosa EA, Polêto MD et al. Potential antileukemia effect and structural analyses of SRPK inhibition by N-(2-(piperidin-1-yl)-5-(trifluoromethyl)phenyl)isonicotinamide (SRPIN340). PLOS ONE 10(8), e0134882 (2015).
    • 79. van Roosmalen W, Le Dévédec SE, Golani O et al. Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant. J. Clin. Invest. 125, 1648–1664 (2015).
    • 80. Huang JQ, Li HF, Zhu J et al. SRPK1/AKT axis promotes oxaliplatin-induced anti-apoptosis via NF-κB activation in colon cancer. J. Transl. Med. 19, 280 (2021).
    • 81. Cerbán FM, Stempin CC, Volpini X, Carrera Silva EA, Gea S, Motran CC. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim. Biophys. Acta Mol. Basis. Dis. 1866, doi: 10.1016/j.bbadis.2020.165707 (2020).
    • 82. Spellberg B, Edwards JE Jr. Type 1/type 2 immunity in infectious diseases. Clin. Infect. Dis. 32, 76–102 (2001).
    • 83. Mendes FC, de Paiva JC, da Silva EQG et al. Immunomodulatory activity of trifluoromethyl arylamides derived from the SRPK inhibitor SRPIN340 and their potential use as vaccine adjuvant. Life Sci. 307, doi: 10.1016/j.lfs.2022.120849 (2022). • This article adds to the main points of the in vivo results and discussion, as it describes and provides data on SRPIN340 and analogs’ effects as immunomodulators for macrophage M2 profile.
    • 84. Medina-Buelvas DM, Rodríguez-Sosa M, Veja L. Characterization of macrophage polarization in mice infected with Ninoa strain of Trypanosoma cruzi. Pathogens 10, 1444 (2021).
    • 85. Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC. The Trypanosoma cruzi protease cruzain mediates immune evasion. PLOS Pathog. 7(9), e1002139 (2011).
    • 86. Costa RW, da Silveira JF, Bahia D. Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways. Front. Microbiol. 31, 388 (2016).