We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Preliminary Communication

Antidiabetic sulfonylureas modulate farnesoid X receptor activation and target gene transcription

    Ramona Steri

    Institute of Pharmaceutical Chemistry/ZAFES/LiFF, Goethe-University Frankfurt Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany

    ,
    Mahmut Kara

    Beilstein Endowed Chair for Cheminformatics/ZAFES/LiFF, Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Siesmayerstr. 70, D-60323 Frankfurt, Germany

    ,
    Ewgenij Proschak

    Beilstein Endowed Chair for Cheminformatics/ZAFES/LiFF, Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Siesmayerstr. 70, D-60323 Frankfurt, Germany

    ,
    Dieter Steinhilber

    Institute of Pharmaceutical Chemistry/ZAFES/LiFF, Goethe-University Frankfurt Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany

    ,
    Gisbert Schneider

    Beilstein Endowed Chair for Cheminformatics/ZAFES/LiFF, Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Siesmayerstr. 70, D-60323 Frankfurt, Germany

    Institute of Pharmaceutical Sciences, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.

    &
    Manfred Schubert-Zsilavecz

    † Author for correspondence

    Institute of Pharmaceutical Chemistry/ZAFES/LiFF, Goethe-University Frankfurt Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany

    Published Online:https://doi.org/10.4155/fmc.10.10

    Background: The sulfonylureas glibenclamide and glimepiride are oral antidiabetic drugs that stimulate insulin secretion by closing pancreatic ATP-dependent potassium channels. The farnesoid X receptor (FXR) is a ligand-activated transcription factor that regulates the expression of several target genes involved in bile acid metabolism and lipid and glucose homeostasis. Methods: In this study we investigated the potential effects of sulfonylureas on the signaling of FXR using a reporter-gene assay, real-time qPCR and computational methods such as molecular docking and molecular dynamic simulations. Results: We demonstrate that glibenclamide and glimepiride modulate FXR activation in a reporter-gene assay and induce FXR target genes in HepG2 cells. Within the docking experiments and molecular dynamics simulation, we found glibenclamide interacting with the ligand-binding domain of FXR and with helix 12. Conclusion: Glibenclamide and glimepiride are potential ligands of FXR and modulate activation and signaling.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Rendell M. The role of sulphonylureas in the management of Type 2 diabetes mellitus. Drugs64(12),1339–1358 (2004).
    • Müller G, Satoh Y, Geisen K. Extrapancreatic effects of sulfonylureas – a comparison between glimepiride and conventional sulfonylureas. Diabetes Res. Clin. Pract.28(Suppl.),115–137 (1995).
    • Claudel T, Sturm E, Kuipers F, Staels B. The farnesoid X receptor: a novel drug target? Expert Opin. Investig. Drugs13(9),1135–1148 (2004).▪▪ Excellent review that addresses briefly all aspects of the farnesoid X receptor (FXR) as a potential drug target including possible indications.
    • Claudel T, Staels B, Kuipers F. The farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol.25(10),2020–2030 (2005).
    • Fiorucci S, Mencarelli A, Distrutti E, Palladino G, Cipriani S. Targeting farnesoid-X-receptor: from medicinal chemistry to disease treatment. Curr. Med. Chem.17,139–159 (2010).▪▪ Excellent review that gives a comprehensive overview about the ‘state of the art’ of FXR research.
    • Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol. Endocrinol.17(2),259–272 (2003).
    • Stayrook KR, Bramlett KS, Savkur RS et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology146(3),984–991 (2005).
    • Fiorucci S, Baldelli F. Farnesoid X receptor agonists in biliary tract disease. Curr. Opin. Gastroenterol.25(3),252–259 (2009).
    • Fiorucci S, Cipriani S, Baldelli F, Mencarelli A. Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog. Lipid Res.49(2),171–185 (2009).
    • 10  Maloney PR, Parks DJ, Haffner CD et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem.43(16),2971–2974 (2000).▪ Identification of GW4064 as first potent selective FXR agonist.
    • 11  Pellicciari R, Fiorucci S, Camaioni E et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem.45(17),3569–3572 (2002).
    • 12  Downes M, Verdecia MA, Roecker AJ et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell11(4),1079–1092 (2003).▪ Discovery of fexaramine and the first published crystal structure of FXR.
    • 13  Flatt B, Martin R, Wang TL et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J. Med. Chem. (2009).
    • 14  Evans MJ, Mahaney PE, Borges-Marcucci L et al. A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. Am. J. Physiol. Gastrointest. Liver Physiol.296(3),G543–G552 (2009).
    • 15  Dussault I, Beard R, Lin M et al. Identification of gene-selective modulators of the bile acid receptor FXR. J. Biol. Chem.278(9),7027–7033 (2003).▪ Identification of the first gene-specific FXR modulator.
    • 16  Kaimal R, Song X, Yan B, King R, Deng R. Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones. J. Pharmacol. Exp. Ther.330(1),125–134 (2009).
    • 17  Fukuen S, Iwaki M, Yasui A, Makishima M, Matsuda M, Shimomura I. Sulfonylurea agents exhibit peroxisome proliferator-activated receptor γ agonistic activity. J. Biol. Chem.280(25),23653–23659 (2005).
    • 18  Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using gold. Proteins52(4),609–623 (2003).
    • 19  Eldridge MD, Murray CW, Auton TR, Paolini GY, Mee RP. Empirical scoring functions. I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des.11(5),425–445 (1997).
    • 20  Labute P. Protonate 3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins75(1),187–205 (2009).
    • 21  Case DA, Cheatham TE 3rd, Darden T et al. The amber biomolecular simulation programs. J. Comput. Chem.26(16),1668–1688 (2005).
    • 22  Akwabi-Ameyaw A, Bass JY, Caldwell RD et al. Conformationally constrained farnesoid X receptor (FXR) agonists: naphthoic acid-based analogs of GW4064. Bioorg. Med. Chem. Lett.18(15),4339–4343 (2008).
    • 23  Allen T, Zhang F, Moodie SA et al. Halofenate is a selective peroxisome proliferator-activated receptor γ modulator with antidiabetic activity. Diabetes55(9),2523–2533 (2006).
    • 24  Goodwin B, Jones SA, Price RR et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and lRH-1 represses bile acid biosynthesis. Mol. Cell6(3),517–526 (2000).
    • 25  Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7α-hydroxylase gene (CYP7A1) transcription. J. Biol. Chem.275(15),10918–10924 (2000).
    • 26  Holt JA, Luo G, Billin AN et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev.17(13),1581–1591 (2003).
    • 27  Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem.276(31),28857–28865 (2001).
    • 28  Warnmark A, Treuter E, Wright AP, Gustafsson JA. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol. Endocrinol.17(10),1901–1909 (2003).
    • 29  Soisson SM, Parthasarathy G, Adams AD et al. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc. Natl Acad. Sci. USA105(14),5337–5342 (2008).▪ Discovery of MFA-1 having a flipped orientation within the ligand-binding domain of FXR relative to bile acids.
    • 30  Feng S, Yang M, Zhang Z et al. Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist. Bioorg. Med. Chem. Lett.19,2595–2598 (2009).
    • 31  Akwabi-Ameyaw A, Bass JY, Caldwell RD et al. FXR agonist activity of conformationally constrained analogs of GW4064. Bioorg. Med. Chem. Lett.19(16),4733–4739 (2009).
    • 32  Bass JY, Caldwell RD, Caravella JA et al. Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064. Bioorg. Med. Chem. Lett.19(11),2969–2973 (2009).
    • 33  Nettles KW, Greene GL. Nuclear receptor ligands and cofactor recruitment: is there a coactivator ‘on deck’? Mol. Cell11(4),850–851 (2003).
    • 34  Lindblad U, Melander A. Sulphonylurea dose-response relationships: relation to clinical practice. Diabetes Obes. Metab.2(1),25–31 (2000).