Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T04:20:58.134Z Has data issue: false hasContentIssue false

Left Invariant Einstein–Randers Metrics on Compact Lie Groups

Published online by Cambridge University Press:  20 November 2018

Hui Wang
Affiliation:
College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R. Chinae-mail: wanghui0801@mail.nankai.edu.cn
Shaoqiang Deng
Affiliation:
College of Mathematics, Nankai University, Tianjin 300071, P.R. Chinae-mail: dengsq@nankai.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study left invariant Einstein–Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein–Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein–Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Besse, A., Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete 10. Springer-Verlag, Berlin, 1987.Google Scholar
[2] Bao, D. and Robles, C., Ricci and flag curvatures in Finsler geometry. In: A Sampler of Riemann–Finsler Geometry. Math. Sci. Res. Inst. Publ. 50. Cambridge University Press, Cambridge, 2004, pp. 197259.Google Scholar
[3] Bao, D., Robles, C., and Shen, Z., Zermelo navigation on Riemannian manifolds. J. Differential Geom. 66(2004), no. 3, 377435.Google Scholar
[4] Bao, D. and Shen, Z., Finsler metrics of constant positive curvature on the Lie group S 3 . J. London Math. Soc. 66(2002), no. 2, 453467. http://dx.doi.org/10.1112/S0024610702003344 Google Scholar
[5] Deng, S. and Hou, Z., The group of isometries of a Finsler space. Pacific J. Math. 207(2002), no. 1, 149157. http://dx.doi.org/10.2140/pjm.2002.207.149 Google Scholar
[6] Deng, S. and Hou, Z., Homogeneous Einstein–Randers spaces of negative Ricci curvature. C. R. Acad. Sci. Paris 347(2009), no. 19-20, 11691172.Google Scholar
[7] D’Atri, J. E. and Ziller, W., Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Amer. Math. Soc. 18(1979), no. 215.Google Scholar
[8] Helgason, S., Differential geometry, Lie groups, and Symmetric spaces. Pure and Applied Mathematics 80. Academic press, New York, 1978.Google Scholar
[9] Huang, L. and Mo, X., On curvature decreasing property of a class of navigation problems. Publ. Math. Debrecen 71(2007), no. 1-2, 141163.Google Scholar
[10] Latifi, D., Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57(2007), no. 5, 14211433. http://dx.doi.org/10.1016/j.geomphys.2006.11.004 Google Scholar
[11] Milnor, J., Curvatures of left invariant metrics on Lie groups. Advances in Math. 21(1976), no. 3, 293329. http://dx.doi.org/10.1016/S0001-8708(76)80002-3 Google Scholar
[12] Ochiai, T. and Takahashi, T., The group of isometries of a left invariant Riemannian metric on a Lie group. Math. Ann. 223(1976), no. 1, 9196. http://dx.doi.org/10.1007/BF01360280 Google Scholar
[13] Robles, C., Einstein metrics of Randers type. Ph.D. dissertation, University of British Colombia, 2003.Google Scholar
[14] Robles, C., Geodesics in Randers spaces of constant curvature. Trans. Amer. Math. Soc. 359(2007), no. 4, 16331651. http://dx.doi.org/10.1090/S0002-9947-06-04051-7 Google Scholar