Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T23:27:12.428Z Has data issue: false hasContentIssue false

Resonant Tunneling of Fast Solitons through Large Potential Barriers

Published online by Cambridge University Press:  20 November 2018

Walid K. Abou Salem
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2 email: abousalem@math.usask.ca
Catherine Sulem
Affiliation:
Department of Mathematics, University of Toronto, Toronto, ON, M5S 2E4 email: sulem@math.utoronto.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We rigorously study the resonant tunneling of fast solitons through large potential barriers for the nonlinear Schrödinger equation in one dimension. Our approach covers the case of general nonlinearities, both local and Hartree (nonlocal).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Abou Salem, W. K., Effective dynamics of solitons in the presence of rough nonlinear perturbations. Nonlinearity 22(2009), no. 4, 747763. doi:10.1088/0951-7715/22/4/004Google Scholar
[2] Abou Salem, W. K., Solitary wave dynamics in time-dependent potentials. J. Math. Phys. 49(2008), no. 3, 032101. doi:10.1063/1.2837429Google Scholar
[3] Abou Salem, W. K. and Sulem, C., Stochastic acceleration of solitons for the nonlinear Schrödinger equation. SIAM J. Math. Anal. 41(2009), no. 1, 117152. doi:10.1137/080732419Google Scholar
[4] Abou Salem, W. K., Fröhlich, J., and Sigal, I. M., Colliding solitons for the nonlinear Schrödinger equation. Commun. Math. Phys. 291(2009), no. 1, 151176. doi:10.1007/s00220-009-0871-8Google Scholar
[5] Abou Salem, W. K., Liu, X., and Sulem, C., Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete Contin. Dyn. Syst (A) 29(2011), no. 4, 16371649.Google Scholar
[6] Bronski, J. C. and Jerrard, R. L., Soliton dynamics in a potential. Math. Res. Lett. 7(2000), no. 2–3, 329–342.Google Scholar
[7] Cazenave, T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.Google Scholar
[8] Fröhlich, J., Tsai, T.-P., and Yau, H.-T., On the point-particle (Newtonian) limit of the non-linear Hartree equation. Commun. Math. Phys. 225(2002), no. 2, 223274. doi:10.1007/s002200100579Google Scholar
[9] Fröhlich, J., Gustafson, S., Jonsson, B. L. G., and Sigal, I. M., Solitary wave dynamics in an external potential. Commun. Math. Phys. 250(2004), no. 3, 613642.Google Scholar
[10] Fröhlich, J., Gustafson, S., Jonsson, B. L. G., and Sigal, I. M., Long time motion of NLS solitary waves in a confining potential. Ann. Henri Poincaré 7(2006), no. 4, 621660. doi:10.1007/s00023-006-0263-yGoogle Scholar
[11] Ginibre, J. and Velo, G., On the class of nonlinear Schrödinger equations. II. Scattering theory, general case. J. Funct. Anal. 32(1979), no. 1, 3371. doi:10.1016/0022-1236(79)90077-6Google Scholar
[12] Golberg, M. and Schlag, W., Dispersive estimates for Schrödinger operators in dimensions one and three. Commun. Math. Phys. 251(2004), no. 1. 157–178. doi:10.1007/s00220-004-1140-5Google Scholar
[13] Grillakis, M., Shatah, J., and Strauss, W., Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1987), no. 1, 160197. doi:10.1016/0022-1236(87)90044-9Google Scholar
[14] Holmer, J. and Zworski, M., Slow soliton interaction with delta impurities. J. Mod. Dyn. 1(2007), no. 4, 689718.Google Scholar
[15] Holmer, J. and Zworski, M., Soliton interaction with slowly varying potentials. Int. Math. Res. Not. IMRN 2008 Art. ID rnn026.Google Scholar
[16] Holmer, J., Marzuola, J., and Zworski, M., Fast soliton scattering by delta impurities. Commun. Math. Phys. 274(2007), no. 1, 187216. doi:10.1007/s00220-007-0261-zGoogle Scholar
[17] Journé, J.-L., Soffer, A., and Sogge, C. D., Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44(1991), no. 5, 573604. doi:10.1002/cpa.3160440504Google Scholar
[18] Keel, M. and Tao, T., Endpoint Strichartz inequalities. Amer. J. Math. 120(1998), no. 5, 955980. doi:10.1353/ajm.1998.0039Google Scholar
[19] Reed, M. and Simon, B., Methods of modern mathematical physics. III. Scattering theory. Academic Press, New York-London, 1979.Google Scholar
[20] Rodnianski, I. and Schlag, W., Time decay for solutions of the Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(2004), no. 3, 451513. doi:10.1007/s00222-003-0325-4Google Scholar
[21] Strichartz, R. S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(1977), no. 3, 705714. doi:10.1215/S0012-7094-77-04430-1Google Scholar
[22] Sulem, C. and Sulem, P.-L., The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999.Google Scholar
[23] Weder, R., Lp – Lp0 estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170(2000), no. 1, 3768. doi:10.1006/jfan.1999.3507Google Scholar