CC BY-NC-ND 4.0 · World J Nucl Med 2020; 19(04): 327-335
DOI: 10.4103/wjnm.WJNM_26_20
Review Article

Role of 18F-FDG positron emission tomography in carotid atherosclerotic plaque imaging: A systematic review

Reddy Ravikanth
Department of Radiology, St. John's Hospital, Kattappana, Kerala, India
› Author Affiliations

Abstract

Stroke and other thromboembolic events in the brain are often due to carotid artery atherosclerosis, and atherosclerotic plaques with inflammation are considered particularly vulnerable, with an increased risk of becoming symptomatic. Positron emission tomography (PET) with 2-deoxy-2-[Fluorine-18] fluoro-D-glucose (18F-FDG) provides valuable metabolic information regarding arteriosclerotic lesions and may be applied for the detection of vulnerable plaque. At present, however, patients are selected for carotid surgical intervention on the basis of the degree of stenosis alone, and not the vulnerability or inflammation of the lesion. During the past decade, research using PET with the glucose analog tracer 18F-fluor-deoxy-glucose, has been implemented for identifying increased tracer uptake in symptomatic carotid plaques, and tracer uptake has been shown to correlate with plaque inflammation and vulnerability. These findings imply that 18F-FDG PET might hold the promise for a new and better diagnostic test to identify patients eligible for carotid endarterectomy. The rationale for developing diagnostic tests based on molecular imaging with 18F-FDG PET, as well as methods for simple clinical PET approaches, are discussed. This is a systematic review, following Preferred Reporting Items for Systematic Reviews guidelines, which interrogated the PUBMED database from January 2001 to November 2019. The search combined the terms, “atherosclerosis,” “inflammation,” “FDG,” and “plaque imaging.” The search criteria included all types of studies, with a primary outcome of the degree of arterial vascular inflammation determined by 18F-FDG uptake. This review examines the role of 18F-FDG PET imaging in the characterization of atherosclerotic plaques.

Financial support and sponsorship

Nil.




Publication History

Received: 03 April 2020

Accepted: 14 April 2020

Article published online:
19 April 2022

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Musuka TD, Wilton SB, Traboulsi M, Hill MD. Diagnosis and management of acute ischemic stroke: Speed is critical. CMAJ 2015;187:887-93.
  • 2 Lui SK, Nguyen MH. Elderly stroke rehabilitation: Overcoming the complications and its associated challenges. Curr Gerontol Geriatr Res 2018;2018:9853837.
  • 3 Flaherty ML, Kissela B, Khoury JC, Alwell K, Moomaw CJ, Woo D, et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology 2013;40:36-41.
  • 4 Wabnitz AM, Turan TN. Symptomatic carotid artery stenosis: Surgery, stenting, or medical therapy? Curr Treat Options Cardiovasc Med 2017;19:62.
  • 5 Morris DR, Ayabe K, Inoue T, Sakai N, Bulbulia R, Halliday A, et al. Evidence-based carotid interventions for stroke prevention: State-of-the-art review. J Atheroscler Thromb 2017;24:373-87.
  • 6 Hadar N, Raman G, Moorthy D, O'Donnell TF, Thaler DE, Feldmann E, et al. Asymptomatic carotid artery stenosis treated with medical therapy alone: Temporal trends and implications for risk assessment and the design of future studies. Cerebrovasc Dis 2014;38:163-73.
  • 7 Lanzino G, Rabinstein AA, Brown RD Jr. Treatment of carotid artery stenosis: Medical therapy, surgery, or stenting? Mayo Clin Proc 2009;84:362-87.
  • 8 Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J; MRC Asymptomatic Carotid Surgery Trial (ACST) Collaborative Group. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: Randomised controlled trial. Lancet 2004;363:1491-502.
  • 9 Meschia JF, Brott TG, Hobson RW. II Diagnosis and invasive management of carotid atherosclerotic stenosis. Mayo Clin Proc 2007;82:851-8.
  • 10 Rezende PC, Ribas FF, Serrano CV Jr., Hueb W. Clinical significance of chronic myocardial ischemia in coronary artery disease patients. J Thorac Dis 2019;11:1005-15.
  • 11 Conrad MF, Boulom V, Mukhopadhyay S, Garg A, Patel VI, Cambria RP. Progression of asymptomatic carotid stenosis despite optimal medical therapy. J Vasc Surg 2013;58:128-350.
  • 12 Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary atherosclerotic vulnerable plaque: Current perspectives. J Am Heart Assoc 2017;6:e005543.
  • 13 Skagen K, Skjelland M, Zamani M, Russell D. Unstable carotid artery plaque: New insights and controversies in diagnostics and treatment. Croat Med J 2016;57:311-20.
  • 14 Xu B, Li C, Guo Y, Xu K, Yang Y, Yu J. Current understanding of chronic total occlusion of the internal carotid artery. Biomed Rep 2018;8:117-25.
  • 15 Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ. Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: Promising tracers on the horizon. Eur J Nucl Med Mol Imaging 2019;46:251-65.
  • 16 Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary atherosclerotic vulnerable plaque: Current perspectives. J Am Heart Assoc 2017;6:e005543.
  • 17 Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 2012;1:60-74.
  • 18 Langley SR, Willeit K, Didangelos A, Matic LP, Skroblin P, Barallobre-Barreiro J, et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J Clin Invest 2017;127:1546-60.
  • 19 Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 2018;9:419.
  • 20 Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS. Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 2011;9:1315-30.
  • 21 Owen DR, Lindsay AC, Choudhury RP, Fayad ZA. Imaging of atherosclerosis. Annu Rev Med 2011;62:25-40.
  • 22 Wildgruber M, Swirski FK, Zernecke A. Molecular imaging of inflammation in atherosclerosis. Theranostics 2013;3:865-84.
  • 23 Alkhalil M, Chai JT, Choudhury RP. Plaque imaging to refine indications for emerging lipid-lowering drugs. Eur Heart J Cardiovasc Pharmacother 2017;3:58-67.
  • 24 Oglat AA, Matjafri MZ, Suardi N, Oqlat MA, Abdelrahman MA, Oqlat AA. A review of medical Doppler ultrasonography of blood flow in general and especially in common carotid artery. J Med Ultrasound 2018;26:3-13.
  • 25 Osborn EA, Jaffer FA. The year in molecular imaging. JACC Cardiovasc Imaging 2010;3:1181-95.
  • 26 Ahmad Sarji S. Physiological uptake in FDG PET simulating disease. Biomed Imaging Interv J 2006;2:e59.
  • 27 Cejka D, Kuntner C, Preusser M, Fritzer-Szekeres M, Fueger BJ, Strommer S, et al. FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo. Br J Cancer 2009;100:1739-45.
  • 28 McKenney-Drake ML, Moghbel MC, Paydary K, Alloosh M, Houshmand S, Moe S, et al. 18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis. Eur J Nucl Med Mol Imaging 2018;45:2190-200.
  • 29 Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708-11.
  • 30 van der Valk FM, Verweij SL, Zwinderman KA, Strang AC, Kaiser Y, Marquering HA, et al. Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging: Implications for vascular interventional studies. JACC Cardiovasc Imaging 2016;9:1198-207.
  • 31 Ravikanth R. Relevance of carotid intima-media thickness and plaque morphology in the risk assessment of patients with acute ischemic cerebral infarcts: A case-control study of large series from a single center. J Med Ultrasound 2020;28:29-34.
  • 32 Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009;50:1611-20.
  • 33 Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008;15:209-17.
  • 34 Joseph P, Ishai A, Mani V, Kallend D, Rudd JH, Fayad ZA, et al. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression. Eur J Nucl Med Mol Imaging 2017;44:141-50.
  • 35 Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging 2013;6:1250-9.
  • 36 Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 2012;71:709-18.
  • 37 Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging 2016;43:270-9.
  • 38 Chowdhury MM, Tarkin JM, Evans NR, Le E, Warburton EA, Hayes PD, et al. 18F-FDG uptake on PET/CT in symptomatic versus asymptomatic carotid disease: A meta-analysis. Eur J Vasc Endovasc Surg 2018;56:172-9.
  • 39 Kafouris PP, Koutagiar IP, Georgakopoulos AT, Spyrou GM, Visvikis D, Anagnostopoulos CD. Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol 2019;11:1-1.
  • 40 Joshi FR, Manavaki R, Fryer TD, Figg NL, Sluimer JC, Aigbirhio FI. Vascular imaging with 18F-fluorodeoxyglucose positron emission tomography is influenced by hypoxia. J Am Coll Cardiol 2017;69:1873-4.
  • 41 Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to (18F) FDG PET imaging. J Am Coll Cardiol 2017;69:1774-91.
  • 42 Vesey AT, Jenkins WS, Irkle A, Moss A, Sng G, Forsythe RO. 18F-Fluoride and 18F-fluorodeoxyglucose positron emission tomography after transient ischemic attack of minor ischaemic stroke: Case-control study. Circ Cardiovasc Imaging 2017;10:1-10.
  • 43 Quirce R, Martinez-Rodriguez I, Banzo I, Jimenez-Bonilla J, Martinez-Amador N, Ibanez-Bravo S. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results. Clin Physiol Funct Imaging 2016;36:499-503.
  • 44 Skagen K, Johnsrud K, Evensen K, Scott H, Krohg-Sorensen K, Reier-Nilsen F. Carotid plaque inflammation assessed with (18)F-FDG PET/CT is higher in symptomatic compared with asymptomatic patients. Int J Stroke 2015;10:730-6.
  • 45 Shaikh S, Welch A, Ramalingam SL, Murray A, Wilson HM, McKiddie F. Comparison of fluorodeoxyglucose uptake in symptomatic carotid artery and stable femoral artery plaques. Br J Surg 2014;101:363-70.
  • 46 Taqueti VR, Di Carli MF, Jerosch-Herold M, Sukhova GK, Murthy VL, Folco EJ. Increased microvascularisation and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging 2014;7:920-9.
  • 47 Muller HF, Viaccoz A, Fisch L, Bonvin C, Lovblad KO, Ratib O. 18FDG-PET-CT: An imaging biomarker of high-risk carotid plaques. Correlation to symptoms and microembolic signals. Stroke 2014;45:3561-6.
  • 48 Grandpierre S, Desandes E, Meneroux B, Djaballah W, Mandry D, Netter F. Arterial foci of F-18 fluorodeoxyglucose are associated with an enhanced risk of subsequent ischemic stroke in cancer patients: A case-control pilot study. Clin Nucl Med 2011;36:85-90.
  • 49 Kwee RM, Truijman MT, Mess WH, Teule GJ, ter Berg JW, Franke CL. Potential of integrated [18F] fluorodeoxyglucose positron-emission tomography/CT in identifying vulnerable carotid plaques. AJNR Am J Neuroradiol 2011;32:950-4.
  • 50 Arauz A, Hoyos L, Zeteno M, Mendoza R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 2007;109:409-12.
  • 51 Davies JR, Rudd JH, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642-7.
  • 52 Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.
  • 53 Satomi T, Ogawa M, Mori I, Ishino S, Kubo K, Magata Y, et al. Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med 2013;54:999-1004.
  • 54 Saba L, Yuan C, Hatsukami TS, Balu N, Qiao Y, DeMarco JK, et al. Carotid artery wall imaging: Perspective and guidelines from the asnr vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2018;39:E9-31.
  • 55 Sun ZH, Rashmizal H, Xu L. Molecular imaging of plaques in coronary arteries with PET and SPECT. J Geriatr Cardiol 2014;11:259-73.
  • 56 Tsivgoulis G, Katsanos AH, Köhrmann M, Caso V, Lemmens R, Tsioufis K, et al. Embolic strokes of undetermined source: Theoretical construct or useful clinical tool?. Ther Adv Neurol Disord 2019;12:1756286419851381.
  • 57 Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014;383:705-13.