CC BY-NC-ND 4.0 · Indian J Plast Surg 2017; 50(01): 005-015
DOI: 10.4103/ijps.IJPS_14_17
Prof. Mira Sen (Banerjee) CME Article
Association of Plastic Surgeons of India

The neurochemistry of peripheral nerve regeneration

Andreea Benga
Department of Plastic Surgery, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
,
Fatih Zor
1   Department of Plastic and Reconstructive Surgery, Gülhane Military Medical Academy, Ankara, Turkey
,
Ahmet Korkmaz
2   Department of Physiology, School of Medicine, Gülhane Military Medical Academy, Ankara, Turkey
,
Bogdan Marinescu
Department of Plastic Surgery, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
,
Vijay Gorantla
3   Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
05 July 2019 (online)

ABSTRACT

Peripheral nerve injuries (PNIs) can be most disabling, resulting in the loss of sensitivity, motor function and autonomic control in the involved anatomical segment. Although injured peripheral nerves are capable of regeneration, sub-optimal recovery of function is seen even with the best reconstruction. Distal axonal degeneration is an unavoidable consequence of PNI. There are currently few strategies aimed to maintain the distal pathway and/or target fidelity during regeneration across the zone of injury. The current state of the art approaches have been focussed on the site of nerve injury and not on their distal muscular targets or representative proximal cell bodies or central cortical regions. This is a comprehensive literature review of the neurochemistry of peripheral nerve regeneration and a state of the art analysis of experimental compounds (inorganic and organic agents) with demonstrated neurotherapeutic efficacy in improving cell body and neuron survival, reducing scar formation and maximising overall nerve regeneration.

 
  • REFERENCES

  • 1 Goulart CO, Martinez AM. Tubular conduits, cell-based therapy and exercise to improve peripheral nerve regeneration. Neural Regen Res 2015; 10: 565-7
  • 2 Zochodne DW. The challenges and beauty of peripheral nerve regrowth. J Peripher Nerv Syst 2012; 17: 1-18
  • 3 Seddon HJ. A classification of nerve injuries. Br Med J 1942; 2: 237-9
  • 4 Maggi SP, Lowe 3rd JB, Mackinnon SE. Pathophysiology of nerve injury. Clin Plast Surg 2003; 30: 109-26
  • 5 Li L, Houenou LJ, Wu W, Lei M, Prevette DM, Oppenheim RW. Characterization of spinal motoneuron degeneration following different types of peripheral nerve injury in neonatal and adult mice. J Comp Neurol 1998; 396: 158-68
  • 6 Hart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res 2008; 30: 999-1011
  • 7 Nuñez G, del Peso L. Linking extracellular survival signals and the apoptotic machinery. Curr Opin Neurobiol 1998; 8: 613-8
  • 8 Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death: Back to the future. FEBS Lett 1996; 396: 7-13
  • 9 Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: An established antioxidant worthy of use in clinical trials. Mol Med 2009; 15: 43-50
  • 10 Saito Y, Nishio K, Ogawa Y, Kimata J, Kinumi T, Yoshida Y. et al. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res 2006; 40: 619-30
  • 11 Navarro X. Chapter 27: Neural plasticity after nerve injury and regeneration. Int Rev Neurobiol 2009; 87: 483-505
  • 12 Abe N, Cavalli V. Nerve injury signaling. Curr Opin Neurobiol 2008; 18: 276-83
  • 13 Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: Ionic regulation and electrical activity. FASEB J 2004; 18: 1934-6
  • 14 Raivich G, Makwana M. The making of successful axonal regeneration: Genes, molecules and signal transduction pathways. Brain Res Rev 2007; 53: 287-311
  • 15 Hirata A, Masaki T, Motoyoshi K, Kamakura K. Intrathecal administration of nerve growth factor delays GAP 43 expression and early phase regeneration of adult rat peripheral nerve. Brain Res 2002; 944: 146-56
  • 16 Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 2011; 193: 267-75
  • 17 Stoll G, Jander S, Myers RR. Degeneration and regeneration of the peripheral nervous system: From Augustus Waller's observations to neuroinflammation. J Peripher Nerv Syst 2002; 7: 13-27
  • 18 Webber C, Zochodne D. The nerve regenerative microenvironment: Early behavior and partnership of axons and Schwann cells. Exp Neurol 2010; 223: 51-9
  • 19 Uçeyler N, Tscharke A, Sommer C. Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain Behav Immun 2007; 21: 553-60
  • 20 Goethals S, Ydens E, Timmerman V, Janssens S. Toll-like receptor expression in the peripheral nerve. Glia 2010; 58: 1701-9
  • 21 Boivin A, Pineau I, Barrette B, Filali M, Vallières N, Rivest S. et al. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 2007; 27: 12565-76
  • 22 Gonzalez-Perez F, Udina E, Navarro X. Extracellular matrix components in peripheral nerve regeneration. Int Rev Neurobiol 2013; 108: 257-75
  • 23 Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ. Growth cone chemotaxis. Trends Neurosci 2008; 31: 90-8
  • 24 Bouquet C, Nothias F. Molecular mechanisms of axonal growth. Adv Exp Med Biol 2007; 621: 1-16
  • 25 Allodi I, Udina E, Navarro X. Specificity of peripheral nerve regeneration: Interactions at the axon level. Prog Neurobiol 2012; 98: 16-37
  • 26 Wen Z, Zheng JQ. Directional guidance of nerve growth cones. Curr Opin Neurobiol 2006; 16: 52-8
  • 27 de Luca AC, Lacour SP, Raffoul W, di Summa PG. Extracellular matrix components in peripheral nerve repair: How to affect neural cellular response and nerve regeneration?. Neural Regen Res 2014; 9: 1943-8
  • 28 Gardiner NJ. Integrins and the extracellular matrix: Key mediators of development and regeneration of the sensory nervous system. Dev Neurobiol 2011; 71: 1054-72
  • 29 Atkins S, Smith KG, Loescher AR, Boissonade FM, O'Kane S, Ferguson MW. et al. Scarring impedes regeneration at sites of peripheral nerve repair. Neuroreport 2006; 17: 1245-9
  • 30 Ngeow WC, Atkins S, Morgan CR, Metcalfe AD, Boissonade FM, Loescher AR. et al. Histomorphometric changes in repaired mouse sciatic nerves are unaffected by the application of a scar-reducing agent. J Anat 2011; 219: 638-45
  • 31 Dreesmann L, Mittnacht U, Lietz M, Schlosshauer B. Nerve fibroblast impact on Schwann cell behavior. Eur J Cell Biol 2009; 88: 285-300
  • 32 Romero FJ. Antioxidants in peripheral nerve. Free Radic Biol Med 1996; 20: 925-32
  • 33 Gess B, Röhr D, Young P. Ascorbic acid and sodium-dependent Vitamin C transporters in the peripheral nervous system: From basic science to clinical trials. Antioxid Redox Signal 2013; 19: 2105-14
  • 34 Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update 2014; 20: 293-307
  • 35 Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 2013; 54: 127-38
  • 36 Turgut M, Uysal A, Pehlivan M, Oktem G, Yurtseven ME. Assessment of effects of pinealectomy and exogenous melatonin administration on rat sciatic nerve suture repair: An electrophysiological, electron microscopic, and immunohistochemical study. Acta Neurochir (Wien) 2005; 147: 67-77
  • 37 Atik B, Erkutlu I, Tercan M, Buyukhatipoglu H, Bekerecioglu M, Pence S. The effects of exogenous melatonin on peripheral nerve regeneration and collagen formation in rats. J Surg Res 2011; 166: 330-6
  • 38 Zencirci SG, Bilgin MD, Yaraneri H. Electrophysiological and theoretical analysis of melatonin in peripheral nerve crush injury. J Neurosci Methods 2010; 191: 277-82
  • 39 Shokouhi G, Tubbs RS, Shoja MM, Hadidchi S, Ghorbanihaghjo A, Roshangar L. et al. Neuroprotective effects of high-dose vs. low-dose melatonin after blunt sciatic nerve injury. Childs Nerv Syst 2008; 24: 111-7
  • 40 Chang HM, Liu CH, Hsu WM, Chen LY, Wang HP, Wu TH. et al. Proliferative effects of melatonin on Schwann cells: Implication for nerve regeneration following peripheral nerve injury. J Pineal Res 2014; 56: 322-32
  • 41 Reid AJ, Shawcross SG, Hamilton AE, Wiberg M, Terenghi G. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations. Neurosci Res 2009; 65: 148-55
  • 42 Zhang CG, Welin D, Novikov L, Kellerth JO, Wiberg M, Hart AM. Motorneuron protection by N-acetyl-cysteine after ventral root avulsion and ventral rhizotomy. Br J Plast Surg 2005; 58: 765-73
  • 43 Traina G. The neurobiology of acetyl-L-carnitine. Front Biosci (Landmark Ed) 2016; 21: 1314-29
  • 44 Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G. Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann N Y Acad Sci 2005; 1053: 153-61
  • 45 Hart AM, Wiberg M, Youle M, Terenghi G. Systemic acetyl-L-carnitine eliminates sensory neuronal loss after peripheral axotomy: A new clinical approach in the management of peripheral nerve trauma. Exp Brain Res 2002; 145: 182-9
  • 46 Wilson AD, Hart A, Wiberg M, Terenghi G. Acetyl-l-carnitine increases nerve regeneration and target organ reinnervation – A morphological study. J Plast Reconstr Aesthet Surg 2010; 63: 1186-95
  • 47 Hinds TD, Stechschulte LA, Elkhairi F, Sanchez ER. Analysis of FK506, timcodar (VX-853) and FKBP51 and FKBP52 chaperones in control of glucocorticoid receptor activity and phosphorylation. Pharmacol Res Perspect 2014; 2: e00076
  • 48 Gold BG, Densmore V, Shou W, Matzuk MM, Gordon HS. Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. J Pharmacol Exp Ther 1999; 289: 1202-10
  • 49 Lagoda G, Xie Y, Sezen SF, Hurt KJ, Liu L, Musicki B. et al. FK506 neuroprotection after cavernous nerve injury is mediated by thioredoxin and glutathione redox systems. J Sex Med 2011; 8: 3325-34
  • 50 Que J, Cao Q, Sui T, Du S, Zhang A, Kong D. et al. Tacrolimus reduces scar formation and promotes sciatic nerve regeneration. Neural Regen Res 2012; 7: 2500-6
  • 51 Gold BG, Zhong YP. FK506 requires stimulation of the extracellular signal-regulated kinase 1/2 and the steroid receptor chaperone protein p23 for neurite elongation. Neurosignals 2004; 13: 122-9
  • 52 Udina E, Voda J, Gold BG, Navarro X. Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst 2003; 8: 145-54
  • 53 Sano M, Yoshida M, Fukui S, Kitajima S. Radicicol potentiates neurotrophin-mediated neurite outgrowth and survival of cultured sensory neurons from chick embryo. J Neurochem 1999; 72: 2256-63
  • 54 Gold BG, Armistead DM, Wang MS. Non-FK506-binding protein-12 neuroimmunophilin ligands increase neurite elongation and accelerate nerve regeneration. J Neurosci Res 2005; 80: 56-65
  • 55 Wang MS, Zeleny-Pooley M, Gold BG. Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther 1997; 282: 1084-93
  • 56 Albayrak BS, Ismailoglu O, Ilbay K, Yaka U, Tanriover G, Gorgulu A. et al. Doxorubicin for prevention of epineurial fibrosis in a rat sciatic nerve model: Outcome based on gross postsurgical, histopathological, and ultrastructural findings. J Neurosurg Spine 2010; 12: 327-33
  • 57 Ilbay K, Etus V, Yildiz K, Ilbay G, Ceylan S. Topical application of mitomycin C prevents epineural scar formation in rats. Neurosurg Rev 2005; 28: 148-53
  • 58 Chan KM, Gordon T, Zochodne DW, Power HA. Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets. Exp Neurol 2014; 261: 826-35
  • 59 Sun HH, Saheb-Al-Zamani M, Yan Y, Hunter DA, Mackinnon SE, Johnson PJ. Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo . Neuroscience 2012; 223: 114-23
  • 60 Zhu J, Mix E, Winblad B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev 2001; 7: 387-98
  • 61 Udina E, Ladak A, Furey M, Brushart T, Tyreman N, Gordon T. Rolipram-induced elevation of cAMP or chondroitinase ABC breakdown of inhibitory proteoglycans in the extracellular matrix promotes peripheral nerve regeneration. Exp Neurol 2010; 223: 143-52
  • 62 Karlidag T, Yildiz M, Yalcin S, Colakoglu N, Kaygusuz I, Sapmaz E. Evaluation of the effect of methylprednisolone and N-acetylcystein on anastomotic degeneration and regeneraton of the facial nerve. Auris Nasus Larynx 2012; 39: 145-50
  • 63 Becker KW, Kienecker EW, Andrae I. Effect of locally applied corticoids on the morphology of peripheral nerves following neurotmesis and microsurgical suture. Neurochirurgia (Stuttg) 1987; 30: 161-7
  • 64 Yildirim MA, Karlidag T, Akpolat N, Kaygusuz I, Keles E, Yalcin S. et al. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J Craniofac Surg 2015; 26: 810-5
  • 65 Seth R, Revenaugh PC, Kaltenbach JA, Rajasekaran K, Meltzer NE, Ghosh D. et al. Facial nerve neurorrhaphy and the effects of glucocorticoids in a rat model. Otolaryngol Head Neck Surg 2012; 147: 832-40
  • 66 Xue JW, Jiao JB, Liu XF, Jiang YT, Yang G, Li CY. et al. Inhibition of peripheral nerve scarring by calcium antagonists, also known as calcium channel blockers. Artif Organs 2016; 40: 514-20
  • 67 Longaker MT, Chiu ES, Harrison MR, Crombleholme TM, Langer JC, Duncan BW. et al. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann Surg 1989; 210: 667-72
  • 68 Ozgenel GY. Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery 2003; 23: 575-81
  • 69 Park JS, Lee JH, Han CS, Chung DW, Kim GY. Effect of hyaluronic acid-carboxymethylcellulose solution on perineural scar formation after sciatic nerve repair in rats. Clin Orthop Surg 2011; 3: 315-24
  • 70 Mekaj AY, Morina AA, Manxhuka-Kerliu S, Neziri B, Duci SB, Kukaj V. et al. Electrophysiological and functional evaluation of peroneal nerve regeneration in rabbit following topical hyaluronic acid or tacrolimus application after nerve repair. Niger Postgrad Med J 2015; 22: 179-84
  • 71 Zor F, Deveci M, Kilic A, Ozdag MF, Kurt B, Sengezer M. et al. Effect of VEGF gene therapy and hyaluronic acid film sheath on peripheral nerve regeneration. Microsurgery 2014; 34: 209-16
  • 72 Agenor A, Dvoracek L, Leu A, Hunter DA, Newton P, Yan Y. et al. Hyaluronic acid/carboxymethyl cellulose directly applied to transected nerve decreases axonal outgrowth. J Biomed Mater Res B Appl Biomater 2017; 105: 568-574
  • 73 Krupinski J, Ferrer I, Barrachina M, Secades JJ, Mercadal J, Lozano R. CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat. Neuropharmacology 2002; 42: 846-54
  • 74 Ozay R, Bekar A, Kocaeli H, Karli N, Filiz G, Ulus IH. Citicoline improves functional recovery, promotes nerve regeneration, and reduces postoperative scarring after peripheral nerve surgery in rats. Surg Neurol 2007; 68: 615-22
  • 75 Caner B, Kafa MI, Bekar A, Kurt MA, Karli N, Cansev M. et al. Intraperitoneal administration of CDP-choline or a combination of cytidine plus choline improves nerve regeneration and functional recovery in a rat model of sciatic nerve injury. Neurol Res 2012; 34: 238-45
  • 76 Lodhi G, Kim YS, Hwang JW, Kim SK, Jeon YJ, Je JY. et al. Chitooligosaccharide and its derivatives: Preparation and biological applications. Biomed Res Int 2014; 2014: 654913
  • 77 Jiang M, Zhuge X, Yang Y, Gu X, Ding F. The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 2009; 454: 239-43
  • 78 Gong Y, Gong L, Gu X, Ding F. Chitooligosaccharides promote peripheral nerve regeneration in a rabbit common peroneal nerve crush injury model. Microsurgery 2009; 29: 650-6
  • 79 Liu J, Gao HY, Wang XF. The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. Neural Regen Res 2015; 10: 1892-6
  • 80 Jin M, Guan CB, Jiang YA, Chen G, Zhao CT, Cui K. et al. Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J Neurosci 2005; 25: 2338-47
  • 81 Cheng C, Webber CA, Wang J, Xu Y, Martinez JA, Liu WQ. et al. Activated RHOA and peripheral axon regeneration. Exp Neurol 2008; 212: 358-69
  • 82 Hiraga A, Kuwabara S, Doya H, Kanai K, Fujitani M, Taniguchi J. et al. Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury. J Peripher Nerv Syst 2006; 11: 217-24
  • 83 Madura T, Tomita K, Terenghi G. Ibuprofen improves functional outcome after axotomy and immediate repair in the peripheral nervous system. J Plast Reconstr Aesthet Surg 2011; 64: 1641-6
  • 84 Camara-Lemarroy CR, Gonzalez-Moreno EI, Guzman-de la Garza FJ, Fernandez-Garza NE. Arachidonic acid derivatives and their role in peripheral nerve degeneration and regeneration. ScientificWorldJournal 2012; 2012: 168953
  • 85 Williams EJ, Walsh FS, Doherty P. The production of arachidonic acid can account for calcium channel activation in the second messenger pathway underlying neurite outgrowth stimulated by NCAM, N-cadherin, and L1. J Neurochem 1994; 62: 1231-4
  • 86 Fu Q, Hue J, Li S. Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. J Neurosci 2007; 27: 4154-64
  • 87 Klegeris A, McGeer PL. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging 2002; 23: 787-94
  • 88 Görgülü A, Imer M, Simsek O, Sencer A, Kutlu K, Cobanoglu S. The effect of aprotinin on extraneural scarring in peripheral nerve surgery: An experimental study. Acta Neurochir (Wien) 1998; 140: 1303-7
  • 89 Petersen J, Russell L, Andrus K, MacKinnon M, Silver J, Kliot M. Reduction of extraneural scarring by ADCON-T/N after surgical intervention. Neurosurgery 1996; 38: 976-83
  • 90 Palatinsky EA, Maier KH, Touhalisky DK, Mock JL, Hingson MT, Coker GT. ADCON-T/N reduces in vivo perineural adhesions in a rat sciatic nerve reoperation model. J Hand Surg Br 1997; 22: 331-5
  • 91 Isla A, Martinez JR, Perez-Lopez C, Pérez CondeC, Morales C, Budke M. A reservable antiadhesion barrier gel reduces the perineural adhesions in rats after anastomosis. J Neurosurg Sci 2003; 47: 195-9
  • 92 Dam-Hieu P, Lacroix C, Said G, Devanz P, Liu S, Tadie M. Reduction of postoperative perineural adhesions by hyaloglide gel: An experimental study in the rat sciatic nerve. Neurosurgery 2005; 56 (02) Suppl: 425-33
  • 93 Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 2003; 27: 277-324
  • 94 Gordon T. The role of neurotrophic factors in nerve regeneration. Neurosurg Focus 2009; 26: E3
  • 95 Klimaschewski L, Hausott B, Angelov DN. The pros and cons of growth factors and cytokines in peripheral axon regeneration. Int Rev Neurobiol 2013; 108: 137-71
  • 96 Zhou FQ, Snider WD. Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1575-92
  • 97 Jungnickel J, Gransalke K, Timmer M, Grothe C. Fibroblast growth factor receptor 3 signaling regulates injury-related effects in the peripheral nervous system. Mol Cell Neurosci 2004; 25: 21-9
  • 98 Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci 2009; 16: 108
  • 99 Zhu S, Zhu Q, Liu X, Yang W, Jian Y, Zhou X. et al. Three-dimensional reconstruction of the microstructure of human acellular nerve allograft. Sci Rep 2016; 6: 30694
  • 100 Amoh Y, Kanoh M, Niiyama S, Hamada Y, Kawahara K, Sato Y. et al. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: An advantageous alternative to ES and iPS cells. J Cell Biochem 2009; 107: 1016-20
  • 101 Tos P, Ronchi G, Geuna S, Battiston B. Future perspectives in nerve repair and regeneration. Int Rev Neurobiol 2013; 109: 165-92
  • 102 Panagopoulos GN, Megaloikonomos PD, Mavrogenis AF. The present and future for peripheral nerve regeneration. Orthopedics 2017; 40: e141-56
  • 103 Zhao L, Lv G, Jiang S, Yan Z, Sun J, Wang L. et al. Morphological differences in skeletal muscle atrophy of rats with motor nerve and/or sensory nerve injury. Neural Regen Res 2012; 7: 2507-15
  • 104 Sinis N, Geuna S, Viterbo F. Translational research in peripheral nerve repair and regeneration. Biomed Res Int 2014; 2014: 381426
  • 105 Nagler A, Rivkind AI, Raphael J, Levi-Schaffer F, Genina O, Lavelin I. et al. Halofuginone – An inhibitor of collagen type I synthesis – Prevents postoperative formation of abdominal adhesions. Ann Surg 1998; 227: 575-82
  • 106 Pines M, Spector I. Halofuginone-the multifaceted molecule. Molecules 2015; 20: 573-94
  • 107 Järvinen TA, Prince S. Decorin: A growth factor antagonist for tumor growth inhibition. Biomed Res Int 2015; 2015: 654765
  • 108 Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ. Decorin suppresses neurocan, brevican, phosphacan and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-42