Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T04:22:08.160Z Has data issue: false hasContentIssue false

EVALUATION OF ICE-NUCLEATING MICROORGANISMS FOR REDUCING THE SUPERCOOLING CAPACITY AND COLD-HARDINESS OF CACOPSYLLA PYRICOLA (HEMIPTERA: PSYLLIDAE)

Published online by Cambridge University Press:  31 May 2012

Richard E. Lee Jr.*
Affiliation:
Department of Zoology, Miami University, Oxford, Ohio, USA 45056
Jacqueline D. Litzgus
Affiliation:
Department of Zoology, Miami University, Oxford, Ohio, USA 45056
John A. Mugnano
Affiliation:
Department of Zoology, Miami University, Oxford, Ohio, USA 45056
Marcia R. Lee
Affiliation:
Department of Microbiology, Miami University, Oxford, Ohio, USA 45056
David R. Horton
Affiliation:
USDA-ARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Rd., Wapato, Washington, USA 98951
John Dunley
Affiliation:
Tree Fruit Research Center, Washington State University, 1100 North Western Ave., Wenatchee, Washington, USA 98801
*
1Author to whom all correspondence should be addressed (E-mail: leere@muohio.edu).

Abstract

In laboratory studies, suspensions of killed and live ice-nucleating microorganisms were used to decrease the supercooling capacity of the winter form of pear psylla, Cacopsylla pyricola (Foerster) (Hemiptera: Psyllidae). Dry, untreated adults supercooled extensively before they froze at −22.7 °C. Application of 1000 ppm of a preparation of the killed ice-nucleating bacterium, Pseudomonas syringae Van Hall 1902 (Pseudomonadaceae), significantly decreased the adults’ supercooling capacity causing some individuals to freeze at temperatures as high as −3.9 °C. Topical application of several live microorganisms also reduced the supercooling capacity of adults significantly; Pseudomonas putida (Trevisan 1989) was the most effective, causing more than 80% of C. pyricola adults to freeze at −15 °C or higher. Furthermore, the temperature of crystallization of adults treated with P. putida remained significantly higher than controls for at least lid post-treatment. Application of ice-nucleating microorganisms also reduced the capacity of adults to survive short-term exposure to high subzero temperatures comparable to a mild frost. Realization of this approach for biological control of pear psylla will require the development of methods for the delivery of microorganisms to overwintering adults under field conditions.

Résumé

Au cours d’études en laboratoire, des suspensions de microorganismes morts ou vivants capables de déclencher la formation de cristaux de glace, ont été utilisées pour réduire la capacité de surfusion de la forme d’hiver de la Psylle du poirier, Cacopsylla pyricola (Foerster) (Hemiptera : Psyllidae). Des adultes secs, non traités, ont subi une importante période de surfusion avant de geler à −22,7 °C. L’application de 1000 ppm d’une préparation de bactéries mortes, Pseudomonas syringae Van Hall 1902 (Pseudomonadaceae), a diminué significativement la capacité de surfusion des adultes et certains ont gelé dès que la température a atteint −3,9 °C. Une application localisée de plusieurs microorganismes vivants a également résulté en une réduction significative de la capacité de surfusion des adultes. Pseudomonas putida (Trevisan 1889) s’est avéré le microorganisme le plus efficace, causant le gel de plus de 80% des adultes de C. pyricola à −15 °C ou à des températures plus élevées. De plus, la température de cristallisation des adultes traités au moyen de P. putida est restée significativement plus élevée que celle des témoins durant au moins 11 jours. L’application de microorganismes capables de provoquer la formation de cristaux de glace a également réduit la capacité des adultes de C. psylla de survivre à de courtes expositions à des températures légèrement sous zéro comparables à celles qui prévalent au cours d’un gel léger. L’utilisation de cette approche dans la lutte contre la Psylle du poirier suppose la mise au point de méthodes pour mettre en contact les microorganismes et les adultes de la forme d’hiver de la psylle sur le terrain.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brunner, J.F., Burts, E.C. 1981. Potential of tree washes as a management tactic against the pear psylla. Journal of Economic Entomology 74: 71–4CrossRefGoogle Scholar
Croft, B.A., Burts, E.C., van de Baan, H.E., Westigard, P.H., Riedl, H. 1989. Local and regional resistance to fenvalerate in Psylla pyricola Foerster (Homoptera: Psyllidae) in western North America. The Canadian Entomologist 121: 121–9CrossRefGoogle Scholar
Fields, P.G. 1992. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Product Research 28: 89118CrossRefGoogle Scholar
Fields, P.G. 1993. Reduction of cold tolerance of stored-product insects by ice-nucleating-active bacteria. Environmental Entomology 22: 470–6CrossRefGoogle Scholar
Fields, P.G., Pouleur, S., Richard, C. 1995. The effect of high temperature storage on the capacity of an ice-nucleating-active bacterium and fungus to reduce insect cold-tolerance. The Canadian Entomologist 127: 3340CrossRefGoogle Scholar
Horton, D.R., Lewis, T.M. 1996. Effects of fenoxycarb on ovarian development, spring fecundity and longevity in winterform pear psylla. Entomologia experimentalis et applicata 81: 181–7CrossRefGoogle Scholar
Horton, D.R., Burts, E.C., Unruh, T.R., Krysan, J.L., Coop, L.B., Croft, B.A. 1994. Phenology of fall dispersal by winterform pear psylla (Homoptera: Psyllidae) in relation to leaf fall and weather. The Canadian Entomologist 126: 111–20CrossRefGoogle Scholar
Horton, D.R., Lewis, T.M., Neven, L.G. 1996. Reduced cold-hardiness of pear psylla (Homoptera: Psyllidae) caused by exposure to external water and surfactants. The Canadian Entomologist 128: 825–30CrossRefGoogle Scholar
Krysan, J.L. 1990. Fenoxycarb and diapause: a possible method of control for pear psylla (Homoptera: Psyllidae). Journal of Economic Entomology 83: 293–9CrossRefGoogle Scholar
Lee, R.E. 1991. Principles of insect low temperature tolerance. pp. 1746in Lee, R.E., Denlinger, D.L. (Eds.), Insects at low temperature. New York: Chapman and HallCrossRefGoogle Scholar
Lee, R.E., Strong-Gunderson, J.M., Lee, M.R., Grove, K.S., Riga, T.J. 1991. Isolation of ice nucleating active bacteria from insects. Journal of Experimental Zoology 257: 124–7CrossRefGoogle Scholar
Lee, R.E., Strong-Gunderson, J.M., Lee, M.R., Davidson, E.C. 1992. Ice-nucleating active bacteria decrease the cold-hardiness of stored grain insects. Journal of Economic Entomology 85: 371–4CrossRefGoogle Scholar
Lee, R.E., Lee, M.R., Strong-Gunderson, J.M. 1993. Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. Journal of Insect Physiology 39: 112CrossRefGoogle Scholar
Lee, R.E., Costanzo, J.P., Kaufman, P.E., Lee, M.R., Wyman, J.A. 1994. Ice-nucleating active bacteria reduce the cold-hardiness of the freeze-tolerant Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 87: 377–81CrossRefGoogle Scholar
Lee, R.E., Lee, M.R., Strong-Gunderson, J.M. 1995 a. Biological control of insect pests using ice-nucleating microorganisms. pp. 257–69 in Lee, R.E., Warren, G.J., Gusta, L.V. (Eds.). Biological ice nucleation and its applications. St. Paul: American Phytopathological PressGoogle Scholar
Lee, M.R., Lee, R.E., Strong-Gunderson, J.M., Minges, S.R. 1995 b. Isolation of ice nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. Cryobiology 32: 358–65CrossRefGoogle ScholarPubMed
Lee, R.E., Steigerwald, K.A., Wyman, J.A., Costanzo, J.P., Lee, M.R. 1996. Anatomic site of application of ice-nucleating active bacteria affects supercooling in the Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology 25: 465–9CrossRefGoogle Scholar
Lindow, S.E. 1982. Epiphytic ice nucleation-active bacteria. pp. 335–62 in Mount, M.S., Lacy, G.H. (Eds.). Phytopathogenic prokaryotes. New York: Academic PressCrossRefGoogle Scholar
Pree, D.J., Archibald, D.E., Ker, K.W., Cole, K.J. 1990. Occurrence of pyrethroid resistance in pear psylla (Homoptera: Psyllidae) populations from southern Ontario. Journal of Economic Entomology 83: 2159–63CrossRefGoogle Scholar
Strong-Gunderson, J.M., Lee, R.E., Lee, M.R. 1992. Topical application of ice-nucleating-active bacteria decreases insect cold tolerance. Applied and Environmental Microbiology 58: 2711–6CrossRefGoogle ScholarPubMed
Strong-Gunderson, J.M., Lee, R.E., Lee, M.R. 1994. Ice nucleating active bacteria increase insect mortality at high subzero temperatures. Cryo-Letters 15: 385–92Google Scholar
Vali, G. 1971. Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. Journal of Atmospheric Science 28: 402–92.0.CO;2>CrossRefGoogle Scholar