Laser Surface Alloying of Aluminium Alloys with Cu/Fe Metallic Powders

Article Preview

Abstract:

In this paper, the influence of laser surface alloying on the structure and mechanical properties of aluminium alloy was analysed. As a parent material aluminium EN AC-51300 alloy was applied. The laser surface alloying was executed by direct introduction of metallic powder Fe/Cu into the remelted area (molten pool). As a heat flux, the Hight Power Fiber Laser (HPFL) has been used. Metallic powder before the treatment was mixed in a ball mill and dried on the hot plate (90°C temperature). The mechanical and tribological properties of alloyed surface were analysed including hardness (HRF), microhardness (HV0.1) and ball-on-plate wear test. The structure of the laser alloyed surface was evaluated by light and scanning electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 308)

Pages:

64-75

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] K. Xhanari, M. Finšgar, M. K. Hrnčič, U. Maver, Ž. Knez, i B. Seiti, Green corrosion inhibitors for aluminium and its alloys: a review,, RSC Adv., t. 7, nr 44, s. 27299–27330, 2017,.

DOI: 10.1039/c7ra03944a

Google Scholar

[2] I. Polmear, D. StJohn, J.-F. Nie, i M. Qian, Light Alloys: Metallurgy of the Light Metals. Butterworth-Heinemann, (2017).

DOI: 10.1016/b978-0-08-099431-4.00001-4

Google Scholar

[3] M. Król, T. Tański, P. Snopiński, i B. Tomiczek, Structure and properties of aluminium–magnesium casting alloys after heat treatment,, J. Therm. Anal. Calorim., t. 127, nr 1, s. 299–308, sty. 2017,.

DOI: 10.1007/s10973-016-5845-4

Google Scholar

[4] P. M. Nuckowski, P. Snopiński, i T. Wróbel, Influence of Plastic Strain Accumulation in Continuous Ingots during ECAP on Structure and Recrystallization Temperature of AlCu4MgSi Alloy,, Materials, t. 13, nr 3, s. 576, sty. 2020,.

DOI: 10.3390/ma13030576

Google Scholar

[5] P. Nuckowski i T. Wróbel, The influence of variable parameters of horizontal continuous casting on the structure of AlCu4MgSi alloy ingots,, Arch Foundry Eng, t. 18, nr 1, (2018).

Google Scholar

[6] P. Snopiński, T. Tański, K. Labisz, S. Rusz, P. Jonsta, i M. Król, Wrought aluminium–magnesium alloys subjected to SPD processing,, IJMR, t. 107, nr 7, s. 637–645, maj 2016,.

DOI: 10.3139/146.111383

Google Scholar

[7] M. Paczkowska, N. Makuch, i M. Kulka, The influence of various cooling rates during laser alloying on nodular iron surface layer,, Opt. Laser Technol., t. 102, s. 60–67, cze. 2018,.

DOI: 10.1016/j.optlastec.2017.12.027

Google Scholar

[8] A. Piasecki, M. Kotkowiak, N. Makuch, i M. Kulka, Wear behavior of self-lubricating boride layers produced on Inconel 600-alloy by laser alloying,, Wear, t. 426–427, s. 919–933, kwi. 2019,.

DOI: 10.1016/j.wear.2018.12.026

Google Scholar

[9] T. Yamaguchi i H. Hagino, Formation of titanium carbide layer by laser alloying with a light-transmitting resin,, Opt. Lasers Eng., t. 88, s. 13–19, sty. 2017,.

DOI: 10.1016/j.optlaseng.2016.07.007

Google Scholar

[10] W. Pakieła, T. Tanski, M. Pawlyta, K. Pakieła, Z. Brytan, i M. Sroka, The structure and mechanical properties of AlMg5Si2Mn alloy after surface alloying by the use of fiber laser,, Appl. Phys. A, t. 124, nr 3, s. 263, luty 2018,.

DOI: 10.1007/s00339-017-1525-x

Google Scholar

[11] Z. Brytan i W. Pakieła, Laser Surface Treatment of Sintered Stainless Steels for Wear Resistance Enhancement,, Key Eng. Mater., t. 813, s. 221–227, lip. 2019,.

DOI: 10.4028/www.scientific.net/kem.813.221

Google Scholar

[12] L. P. Feng, T. M. Shao, Y. J. Jin, E. Fleury, D. H. Kim, i D. R. Chen, Temperature dependence of the tribological properties of laser re-melted Al–Cu–Fe quasicrystalline plasma sprayed coatings,, J. Non-Cryst. Solids, t. 351, nr 3, s. 280–287, luty 2005,.

DOI: 10.1016/j.jnoncrysol.2004.08.269

Google Scholar

[13] Y. Fu, N. Kang, H. Liao, Y. Gao, i C. Coddet, An investigation on selective laser melting of Al-Cu-Fe-Cr quasicrystal: From single layer to multilayers,, Intermetallics, t. 86, s. 51–58, lip. 2017,.

DOI: 10.1016/j.intermet.2017.03.012

Google Scholar

[14] K. Biswas, R. Galun, B. L. Mordike, i K. Chattopadhyay, Laser cladding of quasicrystal forming Al–Cu–Fe on aluminum,, J. Non-Cryst. Solids, t. 334–335, s. 517–523, mar. 2004,.

DOI: 10.1016/j.jnoncrysol.2003.12.034

Google Scholar

[15] S. Zhou, T. Zhang, Z. Xiong, X. Dai, C. Wu, i Z. Shao, Investigation of Cu–Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding,, Opt. Laser Technol., t. 59, s. 131–136, lip. 2014,.

DOI: 10.1016/j.optlastec.2013.12.013

Google Scholar

[16] M. Sroka, E. Jonda, i W. Pakieła, Laser Surface Modification of Aluminium Alloy AlMg9 with B4C Powder,, Materials, t. 13, nr 2, s. 402, sty. 2020,.

DOI: 10.3390/ma13020402

Google Scholar

[17] M. Ramachandra i K. Radhakrishna, Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite,, Wear, t. 262, nr 11, s. 1450–1462, maj 2007,.

DOI: 10.1016/j.wear.2007.01.026

Google Scholar