Laser Thermal Oxidation by Ytterbium-Doped Fibre Laser of the Hot and Cold-Rolled Stainless Steel Surface

Article Preview

Abstract:

In paper laser thermal oxidation of austenitic stainless steels AISI 201, 304L of different surface mill finishes, the hot and cold rolled was investigated by the Ytterbium-doped fibre laser (λ=1070 nm) with an output power of 400W by varying scanning speed in the range 5÷20m/s in the air atmosphere. The influence of laser oxidation parameters on the surface colour was evaluated by colorimetric identification.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 308)

Pages:

100-109

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] E. Kikuti, R. Conrrado, N. Bocchi, S. Biaggio and R. Rocha-Filho, Chemical and Electrochemical Coloration of Stainless Steel and Pitting Corrosion,, J. Braz. Chem. Soc., Vol. 15, No. 4, pp.472-480, (2004).

DOI: 10.1590/s0103-50532004000400005

Google Scholar

[2] H. Liu, W. Lin and M. Hong, Surface coloring by laser irradiation of solid substrates,, APL Photonics 4, 051101, (2019).

DOI: 10.1063/1.5089778

Google Scholar

[3] T. Tański, W. Pakieła, D. Janicki, B. Tomiczek, M. Król, Properties of the aluminium alloy EN AC-51100 after laser surface treatment,, Archives of Metallurgy and Materials 61 (1), pp.199-204, (2016).

DOI: 10.1515/amm-2016-0035

Google Scholar

[4] W. Pakieła, LA. Dobrzański, K. Labisz, T. Tański, K. Basa, M. Roszak, The effect of laser surface treatment on structure and mechanical properties aluminium alloy ENAC-AlMg9,, Archives of Metallurgy and Materials 61 (3), pp.1343-1350, (2016).

DOI: 10.1515/amm-2016-0221

Google Scholar

[5] Z. Brytan, W. Pakieła, Laser Surface Treatment of Sintered Stainless Steels for Wear Resistance Enhancement,, Key Engineering Materials 813, pp.221-227, (2019).

DOI: 10.4028/www.scientific.net/kem.813.221

Google Scholar

[6] L.Z. Li., H.Y. Zheng, K.M. Teh, Y.C. Liu, G.C. Lim, H.L. Seng, N.L. Yakovlev,Analysis of oxide formation induced by UV laser coloration of stainless steel,, Applied Surface Science 256, p.1582–1588, (2009).

DOI: 10.1016/j.apsusc.2009.09.025

Google Scholar

[7] P. Gregorčič, M. Sedlaček, B. Podgornik, J. Reif, Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations,, Applied Surface Science 387, pp.698-706, (2016).

DOI: 10.1016/j.apsusc.2016.06.174

Google Scholar

[8] M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. Kudyshev, H. Yu, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Colors with plasmonic nanostructures: A fullspectrum,, Appl. Phys. Rev. 6, 041308; (2019).

DOI: 10.1063/1.5110051

Google Scholar

[9] .L. Ma, F. Wiame, V. Maurice, P. Marcus, Origin of nanoscale heterogeneity in the surface oxide film protecting stainless steel against corrosion, npj Materials Degradation 3:29, (2019).

DOI: 10.1038/s41529-019-0091-4

Google Scholar

[10] L. Ma, F. Wiame, V. Maurice, P. Marcus, New insight on early oxidation stages of austenitic stainless steel from in situ XPS analysis on single-crystalline Fe-18Cr-13Ni(100), Corrosion Science 140, pp.205-216, (2018).

DOI: 10.1016/j.corsci.2018.06.001

Google Scholar

[11] C.-O.A. Olsson, D. Landolt, Passive films on stainless steel-chemistry, structure and growth, Electrochemia Acta 28, pp.1093-1104, (2003).

DOI: 10.1016/s0013-4686(02)00841-1

Google Scholar