HDPE/TiO2 Nanocomposite: Fabrication and Optimization of Mechanical Property by RSM and ANN

Article Preview

Abstract:

Polymeric nanocomposites have proven to be excellent candidate as biomaterials. However, materials and approaches used to improve the mechanical property of the polymer are still under scrutiny. In this study, improvement of mechanical property upon addition of nanotitanium oxide (n-TiO2), cellulose nanocrystal (CNC) and two different types of coupling agent was analyzed. Influence of the individual factors and its interaction with tensile strength was evaluated using analysis of variance. From the analyses of main effect and interaction effects, it could be concluded that n-TiO2 and CNC have major influence on the improving mechanical properties. Moreover, the coupling agent and compatibilizing agent did not have considerable effect on the mechanical properties. The central composite design was used to evaluate the best combination of n-TiO2 and CNC to be experimented. The responses were modeled and optimized using response surface methodology (RSM) and artificial neural network (ANN). The predicted data was in agreement with the experimental data. The modeling accuracy and efficiency is evaluated based on regression coefficient (R square value). Both the method had recommendable R square value. However, the R square value of the Artificial neural network (R2>95%) was higher than Response surface methodology (R2>70 %).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 287)

Pages:

54-58

Citation:

Online since:

February 2019

Export:

Price:

* - Corresponding Author

[1] P. M. Brooks, Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications,, Curr Opin Rheumatol, vol. 14, no. 5, p.573–577, Sep. (2002).

DOI: 10.1097/00002281-200209000-00017

Google Scholar

[2] R. A. Sellards, S. J. Nho, and B. J. Cole, Chondral injuries,, Curr Opin Rheumatol, vol. 14, no. 2, p.134–141, Mar. (2002).

Google Scholar

[3] K. Messner and J. Gillquist, Cartilage repair. A critical review,, Acta Orthop Scand, vol. 67, no. 5, p.523–529, Oct. (1996).

DOI: 10.3109/17453679608996682

Google Scholar

[4] A. R. Poole, T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty, Composition and structure of articular cartilage: a template for tissue repair,, Clin. Orthop. Relat. Res., no. 391 Suppl, pp. S26-33, Oct. (2001).

DOI: 10.1097/00003086-200110001-00004

Google Scholar

[5] J.-K. Suh, S. Scherping, T. Mardi, J. Richard Steadman, and S. L. Y. Woo, Basic science of articular cartilage injury and repair,, Operative Techniques in Sports Medicine, vol. 3, no. 2, p.78–86, Apr. (1995).

DOI: 10.1016/s1060-1872(95)80033-6

Google Scholar

[6] K. A. Athanasiou, A. R. Shah, R. J. Hernandez, and R. G. LeBaron, Basic science of articular cartilage repair,, Clin Sports Med, vol. 20, no. 2, p.223–247, Apr. (2001).

DOI: 10.1016/s0278-5919(05)70304-5

Google Scholar

[7] E. Carletti, A. Motta, and C. Migliaresi, Scaffolds for Tissue Engineering and 3D Cell Culture,, in 3D Cell Culture, Humana Press, 2011, p.17–39.

DOI: 10.1007/978-1-60761-984-0_2

Google Scholar

[8] S. Roy and S. Pal, Characterization of silane coated hollow sphere alumina-reinforced ultra high molecular weight polyethylene composite as a possible bone substitute material,, Bulletin of Materials Science, vol. 25, no. 7, p.609–612, Dec. (2002).

DOI: 10.1007/bf02707893

Google Scholar

[9] K. Bula and T. Jesionowski, Effect of Polyethylene Functionalization on Mechanical Properties and Morphology of PE/SiO2 Composites,, Composite Interfaces, vol. 17, no. 5–7, p.603–614, Jan. (2010).

DOI: 10.1163/092764410x513332

Google Scholar

[10] J. Gu, H. Xu, and C. Wu, Thermal and Crystallization Properties of HDPE and HDPE/PP Blends Modified with DCP,, Adv. Polym. Technol., vol. 33, no. 1, p. n/a-n/a, Mar. (2014).

DOI: 10.1002/adv.21384

Google Scholar

[11] A.-H. I. Mourad, M. S. Mozumder, A. Mairpady, H. Pervez, and U. M. Kannuri, On the Injection Molding Processing Parameters of HDPE-TiO2 Nanocomposites,, Materials, vol. 10, no. 1, p.85, Jan. (2017).

DOI: 10.3390/ma10010085

Google Scholar

[12] M. S. Mozumder, A.-H. I. Mourad, A. Mairpady, H. Pervez, and M. E. Haque, Effect of TiO<Subscript>2</Subscript> Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO<Subscript>2</Subscript> Nanocomposites,, J. of Materi Eng and Perform, vol. 27, no. 5, p.2166–2181, May (2018).

DOI: 10.1007/s11665-018-3305-y

Google Scholar

[13] M. A. S. Azizi Samir, F. Alloin, J.-Y. Sanchez, and A. Dufresne, Cellulose nanocrystals reinforced poly(oxyethylene),, Polymer, vol. 45, no. 12, p.4149–4157, May (2004).

DOI: 10.1016/j.polymer.2004.03.094

Google Scholar

[14] Y. Habibi, L. A. Lucia, and O. J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,, Chem. Rev., vol. 110, no. 6, p.3479–3500, Jun. (2010).

DOI: 10.1021/cr900339w

Google Scholar

[15] J. Jiang, G. Oberdörster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies,, J Nanopart Res, vol. 11, no. 1, p.77–89, Jan. (2009).

DOI: 10.1007/s11051-008-9446-4

Google Scholar

[16] X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,, Phys. Chem. Chem. Phys., vol. 11, no. 34, p.7450–7454, Aug. (2009).

DOI: 10.1039/b904712c

Google Scholar

[17] M. Shahriari-kahkeshi and M. Moghri, Prediction of tensile modulus of PA-6 nanocomposites using adaptive neuro-fuzzy inference system learned by the shuffled frog leaping algorithm,, e-Polymers, vol. 17, no. 2, p.187–198, (2016).

DOI: 10.1515/epoly-2016-0235

Google Scholar

[18] M. Tanzifi et al., Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites,, Journal of Colloid and Interface Science, vol. 519, p.154–173, Jun. (2018).

DOI: 10.1016/j.jcis.2018.02.059

Google Scholar

[19] S. Arefi-Oskoui, A. Khataee, and V. Vatanpour, Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid,, ACS Comb. Sci., vol. 19, no. 7, p.464–477, Jul. (2017).

DOI: 10.1021/acscombsci.7b00046

Google Scholar

[20] W. K. Czaja, D. J. Young, M. Kawecki, and R. M. Brown, The Future Prospects of Microbial Cellulose in Biomedical Applications,, Biomacromolecules, vol. 8, no. 1, p.1–12, Jan. (2007).

DOI: 10.1021/bm060620d

Google Scholar

[21] D. M. Brunette, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications. Springer Science & Business Media, (2001).

Google Scholar