Synthesis and Characterization of Multi-Angular Branched ZnO Microstructures and Peculiar Nanopushpins Obtained by Thermal Treatment from Compacted ZnS Powder

Article Preview

Abstract:

Multi-angular branched ZnO microstructures with rods-shaped tips and nanopushpins with hexagonal cap on top have been synthesized by a simple thermal treatment process of compacted ZnS powder used as starting material and substrate. The structures have been grown at different temperatures (800, 900 and 1000 °C) for 60 min, in a constant nitrogen environment at atmospheric pressure via a catalyst-free process. XRD results of the as-grown products from ZnS powder show a significant reduction in the cubic zincblende phase to the hexagonal wurtzite phase with the increase of treatment temperature, as compared to the bulk value. Post-anneal analyses indicated that the transformation of morphologies of the as-grown structures also depends strongly on the treatment temperature. The proposed method represents an easy and economical way to grow complex structures of ZnO, with a relatively short time, furthermore, without the neediness of use an external substrate to grow. These new and interesting nanostructures have potential in applications such as optoelectronics.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 286)

Pages:

23-30

Citation:

Online since:

January 2019

Export:

Price:

* - Corresponding Author

[1] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun. 103 (1997) 459-463.

DOI: 10.1016/s0038-1098(97)00216-0

Google Scholar

[2] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room temperature ultraviolet nanowire nanolasers, Science 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[3] W.Z. Wang , B.Q. Zeng , J. Yang , B. Poudel , J.Y. Huang , M.J. Naughton , Z.F. Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission, Adv. Mater. 18 (2006) 3275-3278.

DOI: 10.1002/adma.200601274

Google Scholar

[4] J. Zhou, Y. D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla, Z.L. Wang, Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization, Appl. Phys. Lett. 94 (2009).

DOI: 10.1063/1.3133358

Google Scholar

[5] E.J. Canto-Aguilar, M. Rodríguez-Pérez, R. García-Rodríguez, F.I. Lizama-Tzec, A.T. De Denko, F.E. Osterloh, G. Oskam, ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation, Electrochim. Acta 258 (2017) 396-404.

DOI: 10.1016/j.electacta.2017.11.075

Google Scholar

[6] R.S. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packaged piezoelectric fine wires, Nat. Nanotechnol. 4 (2009) 34-39.

DOI: 10.1038/nnano.2008.314

Google Scholar

[7] Z. L. Wang, Towards self-powered nanosystems: From nanogenerators to nanopiezotronics, Adv. Funct. Mater. 18 (2008) 3553-3567.

DOI: 10.1002/adfm.200800541

Google Scholar

[8] G. Flores, J. Carrillo, J.A. Luna, R. Martínez, A. Sierra-Fernandez, O. Milosevic, M. E. Rabanal, Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP, Adv. Powder Technol. 25 (2014).

DOI: 10.1016/j.apt.2014.02.004

Google Scholar

[9] Q. Yuan, S. Hein, R.D. Misra, New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response, Acta Biomater 6 (2010) 2732-2739.

DOI: 10.1016/j.actbio.2010.01.025

Google Scholar

[10] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO- nanostructures, defects, and devices, Mater. Today 10 (2007) 40-48.

DOI: 10.1016/s1369-7021(07)70078-0

Google Scholar

[11] Y. Sun, G. Fuge, M. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett. 396 (2004) 21-26.

DOI: 10.1016/j.cplett.2004.07.110

Google Scholar

[12] Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Site-specific growth of ZnO nanorods using catalysis driven molecular beam epitaxy, Appl. Phys. Lett. 81 (2012) 3046-3048.

DOI: 10.1063/1.1512829

Google Scholar

[13] J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, S.T. Lee, Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes, Chem. Mater. 15 (2003) 305-308.

DOI: 10.1021/cm020649y

Google Scholar

[14] J.L. Yang, S.J. An, W.I. Park, G.-C. Yi, W. Choi, Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition, Adv. Mater. 16 (2004) 1661-1664.

DOI: 10.1002/adma.200306673

Google Scholar

[15] B. Liu, H.C. Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc. 125 (2003) 4430-4431.

DOI: 10.1021/ja0299452

Google Scholar

[16] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 15 (2003) 464-466.

DOI: 10.1002/adma.200390108

Google Scholar

[17] D. A. Magdas, A. Cremades, J. Piqueras, Growth and luminescence of elongated In2O3 micro- and nanostructures in thermally treated InN, J. Appl. Phys. Lett. 88 (2006) 113107.

DOI: 10.1063/1.2185833

Google Scholar

[18] J. Grym, P. Fernández, J. Piqueras, Growth and spatially resolved luminescence of low dimensional structures in sintered ZnO, J. Nanotechnology 16 (2005) 931-935.

DOI: 10.1088/0957-4484/16/6/051

Google Scholar

[19] D. Schuletze, U. Steinike, J. Kussin, U. Kretzschmar, Thermal Oxidation of ZnS Modifications Sphalerite and Wurtzite, Cryst. Res. Techno 30 (1995) 553-558.

DOI: 10.1002/crat.2170300422

Google Scholar

[20] S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Size-induced transition-temperature reduction in nanoparticles of ZnS, Phys. Rev. B 60 (1999) 9191-9193.

DOI: 10.1103/physrevb.60.9191

Google Scholar

[21] K. Mahmood, M. Asghar, N. Amin, A. Ali, Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing, J. Semicond. 36 (2015) 033001.

DOI: 10.1088/1674-4926/36/3/033001

Google Scholar

[22] W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Synthesis of shuttle-like ZnO nanostructures from precursor ZnS nanoparticles, Nanotechnology 16 (2005) 1469-1473.

DOI: 10.1088/0957-4484/16/9/008

Google Scholar

[23] J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren., ZnO Nanobridges and Nanonails, Nano Letters 3 (2003) 325-238.

DOI: 10.1021/nl025884u

Google Scholar