Morpho-Structural and Chemical Composition Properties of PVP-Capped ZnO Nanoparticles Synthesized via a Simple-Polyol Method

Article Preview

Abstract:

In this work, we report on the processing of PVP-capped ZnO nanoparticles employing a simple-polyol method, varying only the molar concentration (0.01 and 0.1 M) of Zn(CH3COO)2•2H2O used as zinc precursor. Synthesis is performed using ethylene glycol (EG) as solvent and polyvinylpyrrolidone (PVP) as capping agent. Physico-chemical characteristics of the as-synthesized particles were studied by X-Ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). SEM micrographs revealed formation of quasi-spherical secondary particles formed by aggregation of primary nanosized subunits crystallized from 0.01 M precursor. When precursor with a higher concentration is used, no aggregation occurs and only tiny primary particles in the nanosized range are obtained. XRD confirmed that ZnO nanoparticles have the hexagonal wurtzite-type structure. SEM, EDS and FT-IR showed that applied route produced ZnO nanoparticles with functionalized surface. Presented results imply clear dependence of the particles morphology and size from precursor concentration which could be used for rapid, continuous, single-step preparation of PVP-capped ZnO nanoparticles tailored in accordance to application demands.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 286)

Pages:

15-22

Citation:

Online since:

January 2019

Export:

Price:

* - Corresponding Author

[1] Ü. Özgür, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98(4) (2005) 041301-041403.

DOI: 10.1063/1.1992666

Google Scholar

[2] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO- nanostructures, defects, and devices, Mater. Today 10(6) (2007) 40-48.

DOI: 10.1016/s1369-7021(07)70078-0

Google Scholar

[3] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun. 103 (1997) 459-463.

DOI: 10.1016/s0038-1098(97)00216-0

Google Scholar

[4] B. Han, X. Liu, X. Xing, N. Chen, X. Xiao, S. Liu, Y. Wang, A high response butanol gas sensor based on ZnO hollow spheres, Sens. Actuators B Chem. 237 (2016) 423-430.

DOI: 10.1016/j.snb.2016.06.117

Google Scholar

[5] K. Soo-Whan, L. Sunghun, S.S. Ahmad Nauman, L. Young Haeng, J. Myung-Hwa, Ferromagnetism in undoped ZnO nanostructures synthesized by solution plasma process, Curr. Appl. Phys. 17(2) (2017) 181-185.

Google Scholar

[6] E.J. Canto-Aguilar, M. Rodríguez-Pérez, R. García-Rodríguez, F.I. Lizama-Tzec, A.T. De Denko, F.E. Osterloh, G. Oskam, ZnO-based dye-sensitized solar cells: Effects of redox couple and dye aggregation, Electrochim. Acta 258 (2017) 396-404.

DOI: 10.1016/j.electacta.2017.11.075

Google Scholar

[7] S.S. Bhat, A. Qurashi, F.A. Khanday, ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises, TrAC Trends Anal. Chem. 86 (2017) 1-13.

DOI: 10.1016/j.trac.2016.10.001

Google Scholar

[8] G. Flores, J. Carrillo, J.A. Luna, R. Martínez, A. Sierra-Fernandez, O. Milosevic, M. E. Rabanal, Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP, Adv. Powder Technol. 25 (2014) 1435-1441.

DOI: 10.1016/j.apt.2014.02.004

Google Scholar

[9] I.M. El-Nahhal, A.A. Elmanama, N.M. El Ashgar, N. Amara, M. Selmane, M.M. Chehimi, Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity, Ultrason. Sonochem. 38 (2017) 478-487.

DOI: 10.1016/j.ultsonch.2017.03.050

Google Scholar

[10] B. Eadi Sunil, K. Sungjin, S. Jung-Hoon, H. Soon-Ku, Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport, Chem. Phys. Lett. 658 (2016) 182-187.

Google Scholar

[11] A. Zawadzka, P. Płóciennik, Y. El Kouari, H. Bougharraf, B. Sahraoui, Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition, J. Lumin. 0169 Part B (2016) 483-491.

DOI: 10.1016/j.jlumin.2015.04.020

Google Scholar

[12] R.S. Gonçalves, P. Barrozo, F. Cunha, Optical and structural properties of ZnO thin films grown by magnetron sputtering: Effect of the radio frequency power, Thin Solid Films 616 (2016) 265-269.

DOI: 10.1016/j.tsf.2016.08.040

Google Scholar

[13] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO Nanostructures Using Sol-Gel Method, Procedia Chemistry 19 ( 2016 ) 211-216.

DOI: 10.1016/j.proche.2016.03.095

Google Scholar

[14] L. Chuan-Pei, L. Chun-Ting, F. Miao-Syuan, L. Sie-Rong, H. Yi-June, C. Ling-Yu, T. Chuan-Ming, S. Shih-Sheng, L. Jiang-Jen, H. Kuo-Chuan, Microemulsion-assisted Zinc Oxide Synthesis: Morphology Control and Its Applications in Photoanodes of Dye-Sensitized Solar Cells, Electrochim. Acta 210 (2016) 483-491.

DOI: 10.1016/j.electacta.2016.05.174

Google Scholar

[15] T. Demes, C. Ternon, D. Riassetto, V. Stambouli, M. Langlet, Comprehensive study of hydrothermally grown ZnO nanowires, J. Mater. Sci. 51 (2016) 10652-10661.

DOI: 10.1007/s10853-016-0287-8

Google Scholar

[16] R. Hong, T. Pan, J. Qian, H. Li, Synthesis and surface modification of ZnO nanoparticles, Chem. Eng. J. 119 (2006) 71-81.

Google Scholar

[17] C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials, Adv. Funct. Mater. 13 (2003) 101-107.

DOI: 10.1002/adfm.200390014

Google Scholar

[18] B.W. Chieng, Y.Y. Loo, Synthesis of ZnO nanoparticles by modified polyol method, Mater. Lett. 73 (2012) 78-82.

DOI: 10.1016/j.matlet.2012.01.004

Google Scholar

[19] H.M. Ismail, A thermoanalytic study of metal acetylacetonates, J. Anal. Appl. Pyrolysis 21 (1991) 315-326.

DOI: 10.1016/0165-2370(91)80006-t

Google Scholar

[20] J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li, A.S. Biris, Polyvinylpyrrolidone-directed crystallization of ZnO with tunable morphology and bandgap, Adv. Funct. Mater. 17 (2007) 3897-3905.

DOI: 10.1002/adfm.200700734

Google Scholar

[21] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Trans. 44 (2015)17883-17905.

DOI: 10.1039/c5dt02964c

Google Scholar