The Effect of Firing Temperature on the Composition and Microstructure of a Geocement-Based Binder of Sodium Water-Glass

Article Preview

Abstract:

The fire performance of a geocement-based binder was investigated with a combination of analytical techniques, in terms of changes in composition and microstructure. Geocement, formulated as Na2O∙Al2O3∙6SiO2∙20H2O, was prepared using metakaolin, sodium water-glass, rotten stone and sodium hydroxide. The mixture was homogenized by passing through a hydrodynamic cavitator. Cubes of 20 mm were prepared, hardened at laboratory conditions for 28 days, and subsequently burnt at 600, 800 and 1200 °C in a laboratory furnace. Cavitation treatment resulted in a highly amorphous binder; amorphous fraction decreased upon firing up to 800 °C due to crystallization, and increased above 1000 °C because of melt formation. Porosity increased with firing temperature and pores larger than 1 mm in diameter prevailed at 1200 °C. The material remained stable up to 1200 °C. The results indicate the adequacy of this geocement-based binder for preparing fire-protecting materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

58-62

Citation:

Online since:

October 2017

Export:

Price:

* - Corresponding Author

[1] V. Petránek, L. Nevřivová, D. Zezulová, S. Guziy, Thermal insulating materials for energy storage ppplication, Adv. Mater. Res. 911 (2014) 30-35.

DOI: 10.4028/www.scientific.net/amr.911.30

Google Scholar

[2] P.V. Krivenko, S.G. Guzii, L. Bodnárová, J. Válek, R. Hela, J. Zach, Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete, J. Build. Eng. 8 (2016) 14-19.

DOI: 10.1016/j.jobe.2016.09.003

Google Scholar

[3] P. Krivenko, S. Guziy, A. Al Musa, The influence of cavitation treatment on amorphization of kaolinite in the dispersion of the Kaolin–Na2O ∙ nSiO2 ∙ mH2O–NaOH–H2O, composition, in: K. Scrivener, A. Favier (Eds. ), Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, RILEM Bookseries, Springer, London, UK, 2015, pp.387-394.

DOI: 10.1007/978-94-017-9939-3_48

Google Scholar

[4] L. Pagliari, M. Dapiaggi, A. Pavese, F. Francescon, A kinetic study of the quartz–cristobalite phase transition, J. Eur. Ceram. Soc. 33 (2013) 3403-3410.

DOI: 10.1016/j.jeurceramsoc.2013.06.014

Google Scholar

[5] A.F. Gualtieri, Thermal behavior of the raw materials forming porcelain stoneware mixtures by combined optical and in situ X-ray dilatometry, J. Am. Ceram. Soc. 90 (2007) 1222-1231.

DOI: 10.1111/j.1551-2916.2007.01614.x

Google Scholar

[6] P. Rovnaník, K. Šafránková, Thermal behaviour of metakaolin/fly ash geopolymers with chamotte aggregate, Materials. 9 (2016) 535.

DOI: 10.3390/ma9070535

Google Scholar

[7] C. Rodriguez-Navarro, G. Cultrone, A. Sanchez-Navas, E. Sebastian, TEM study of mullite growth after muscovite breakdown, Am. Mineral. 88 (2003) 713-724.

DOI: 10.2138/am-2003-5-601

Google Scholar

[8] M. Földvári, Handbook of thermogravimetric system of minerals and its use in geological practice, Geological Institute of Hungary, Budapest, (2011).

DOI: 10.1556/ceugeol.56.2013.4.6

Google Scholar

[9] H. Cheng-Yongi, L. Yun-Ming, M.M. Al Bakri Abdullah, K. Hussin, Thermal resistance variations of fly ash geopolymers: Foaming responses, Sci. Rep. -UK 7 (2017) 45355.

DOI: 10.1038/srep45355

Google Scholar

[10] S.A. Bernal, E.D. Rodríguez, R. Mejía de Gutiérrez, J.L. Provis, Performance at high temperature of alkaliactivated slag pastes produced with silica fume and rice husk ash based activators, Mater. Construc. 65 (2015) 03114.

DOI: 10.3989/mc.2015.03114

Google Scholar