Are there Viruses in Industrial Bioleaching Econiches?

Article Preview

Abstract:

Detailed descriptions of the consortia present in commercial mineral processing operations have emerged in recent years, improving our understanding of the biology and the ecology of bioleaching. In spite of this progress, one of the aspects of biomining microbial ecology that remains un-tackled is that of virus-host interactions. The effects of viruses on the dynamics of the bioleaching microbial consortia and their impact in metal recovery is presently unknown. To begin addressing this issue we asked a basic question: ¿Are there viruses in industrial bioleaching econiches In this work, we answer that question experimentally, assessing the number and types of viral particles recovered in the leachates from different industrial settings, using epifluorescence and transmission electron microscopy. Findings emerging from this work point to an almost null presence of viral particles in the leachates from mineral processing operations, possibly due to structural stability issues of the particles in the extreme acidic and highly oxidant conditions favoured by their potential microbial hosts. In turn, DNA-loaded viral-size vesicles of presently unknown function are frequent and abundant in all samples analysed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

521-525

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] D.B. Johnson, Microbial communities and interactions in low pH environments, in: R. Quatrini, D.B. Johnson (Eds. ), Acidophiles: Life in extremely acidic environments, Caister Academic Press, UK, 2016, pp.121-137.

DOI: 10.21775/9781910190333.08

Google Scholar

[2] S. Hedrich, A. Schippers, Distribution of acidophilic microorganisms in natural and man-made acidic environments, in: R. Quatrini, D.B. Johnson (Eds. ), Acidophiles: Life in extremely acidic environments, Caister Academic Press, UK, 2016, pp.153-175.

DOI: 10.21775/9781910190333.10

Google Scholar

[3] R.A. Edwards, F. Rohwer, Viral metagenomics, Nat. Rev. Microbiol. 3 (2005) 504–510.

DOI: 10.1038/nrmicro1163

Google Scholar

[4] M.G. Weinbauer, Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28 (2004) 127-181.

DOI: 10.1016/j.femsre.2003.08.001

Google Scholar

[5] S.T. Abedon, Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, first ed., Cambridge University Press, UK, (2008).

DOI: 10.1017/cbo9780511541483

Google Scholar

[6] L.R. Comolli, B.J. Baker, K.H. Downing, C.E. Siegerist, J.F. Banfield, Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon, ISME J. 3 (2009) 159-167.

DOI: 10.1038/ismej.2008.99

Google Scholar

[7] J.C. Snyder, B. Bolduc, M.M. Bateson, M.J. Young, The Prevalence of STIV c92-like proteins in acidic thermal environments, Adv. Virol. (2011) 1–6.

DOI: 10.1155/2011/650930

Google Scholar

[8] S.G. John, C.B. Mendez, L. Deng, B. Poulos, A.K.M. Kauffman, S. Kern, J. Brum, M.F. Polz, E.A. Boyle, M.B. Sullivan, A simple and efficient method for concentration of ocean viruses by chemical flocculation, Environ. Microbiol. Rep. 3 (2010).

DOI: 10.1111/j.1758-2229.2010.00208.x

Google Scholar

[9] A. Piekarowicz, A. Kłyż, M. Majchrzak, M. Adamczyk-Popławska, T.K. Maugel, D.C. Stein, Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage, BMC Microbiol. 7 (2007).

DOI: 10.1186/1471-2180-7-66

Google Scholar

[10] R.T. Noble, J.A. Fuhrman, Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria, Aquat. Microb. Ecol. 14 (1998) 113–118.

DOI: 10.3354/ame014113

Google Scholar

[11] S. Chibani-Chennoufi, A. Bruttin, M.L. Dillmann, H. Brüssow, Phage-host interaction: an ecological perspective, J Bacteriol. 186 (2004) 3677-86.

DOI: 10.1128/jb.186.12.3677-3686.2004

Google Scholar

[12] A. Patel, R.T. Noble, J.A. Steele, M.S. Schwalbach, I. Hewson, J.A. Fuhrman, Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I, Nat. Protoc. 2 (2007) 269-76.

DOI: 10.1038/nprot.2007.6

Google Scholar

[13] H.W. Ackermann, D. Prangishvili, Prokaryote viruses studied by electron microscopy, Arch. Virol. 157 (2012) 1843–1849.

DOI: 10.1007/s00705-012-1383-y

Google Scholar

[14] H.W. Ackermann, M. Heldal, Basic electron microscopy of aquatic viruses, in: American Society of Limnology and Oceanography (Eds. ), Manual of Aquatic Viral Ecology, 2010, p.182–192.

DOI: 10.4319/mave.2010.978-0-9845591-0-7.182

Google Scholar

[15] M. Breitbart, L. Wegley, S. Leeds, T. Schoenfeld, F. Rohwer, Phage community dynamics in hot springs, Appl. Environ. Microbiol. 70 (2004) 1633–1640.

DOI: 10.1128/aem.70.3.1633-1640.2004

Google Scholar

[16] N. Katsui, T. Tsuchido, R. Hiramatsu, S. Fujikawa, M. Takano, I. Shibasaki, Heat-induced blebbing and vesiculation of the outer membrane of Escherichia coli, J. Bacteriol. 151 (1982) 1523–1531.

DOI: 10.1128/jb.151.3.1523-1531.1982

Google Scholar

[17] S. Mitra, S. Barman, D. Nag, R. Sinha, D.R. Saha, H. Koley, Outer membrane vesicles of Shigella boydii type 4 induce passive immunity in neonatal mice, FEMS Immunol. Med. Microbiol. 66 (2012) 240–250.

DOI: 10.1111/j.1574-695x.2012.01004.x

Google Scholar