Optimal Controller for Active Vehicle Suspension Disturbed by Sinusoidal Signals

Article Preview

Abstract:

The problem of optimal control of systems disturbed by sinusoidal signals for infinite control time is considered in the paper. The control laws described in [1] is base of a modified mean-square performance index with an infinite control time. The performance index was formulated in such a way that each sinusoidal component corresponds to a separate weight matrix. This allows energy constraints on the control signals to be differentiated based on frequency. An optimal solution to the optimization problem was found. In the paper the problem of the impact of time on the identification of sinusoidal disturbance on vibration isolation system frequency characteristic. The controller was synthesized for slow-active vehicle suspension [2,3]. The model of suspension, synthesis of the controller and implementation of the system was described. The results of simulations of the designed vehicle active suspension system are presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 248)

Pages:

127-134

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] M. Sibielak, W. Rączka, J. Konieczny, J. Kowal, Optimal control based on a modified quadratic performance index for systems disturbed by sinusoidal signals, Mech. Syst. Signal Process. (2014). doi: 10. 1016/j. ymssp. 2015. 03. 031.

DOI: 10.1016/j.ymssp.2015.03.031

Google Scholar

[2] J. Konieczny, J. Kowal, W. Rączka, M. Sibielak, Bench Tests of Slow and Full Active Suspensions in Terms of Energy Consumption, J. Low Freq. Noise, Vib. Act. Control. 32 (2013) 81–98. doi: 10. 1260/0263-0923. 32. 1-2. 81.

DOI: 10.1260/0263-0923.32.1-2.81

Google Scholar

[3] M. Sibielak, J. Konieczny, J. Kowal, W. Rączka, D. Marszalik, Optimal Control of Slow-Active Vehicle Suspension - Results of Experimental Data, J. Low Freq. Noise, Vib. Act. Control. 32 (2013) 99–116. doi: 10. 1260/0263-0923. 32. 1-2. 99.

DOI: 10.1260/0263-0923.32.1-2.99

Google Scholar

[4] S. Kurczyk, M. Pawelczyk, Fuzzy Control for Semi-Active Vehicle Suspension, J. Low Freq. Noise, Vib. Act. Control. 32 (2013) 217–226.

DOI: 10.1260/0263-0923.32.3.217

Google Scholar

[5] S. Kurczyk, M. Pawelczyk, Active Noise Control Using a Fuzzy Inference System Without Secondary Path Modelling, Arch. Acoust. 39 (2015). doi: 10. 2478/aoa-2014-0028.

DOI: 10.2478/aoa-2014-0028

Google Scholar

[6] Z. LOZIA, ROLLOVER THRESHOLDS OF THE BIAXIAL TRUCK DURING MOTION ON AN EVEN ROAD, Veh. Syst. Dyn. 29 (1998) 735–740. doi: 10. 1080/00423119808969601.

DOI: 10.1080/00423119808969601

Google Scholar

[7] Z. Lozia, A TWO-DIMENSIONAL MODEL OF THE INTERACTION BETWEEN A PNEUMATIC TIRE AND AN EVEN AND UNEVEN ROAD SURFACE, Veh. Syst. Dyn. 17 (1988) 227–238. doi: 10. 1080/00423118808969265.

DOI: 10.1080/00423118808969265

Google Scholar

[8] J. Kwaśniewski, I. Dominik, J. Konieczny, K. Lalik, A. Sakeb, Application of self-excited acoustical system for stress changes measurement in sandstone bar, J. Theor. Appl. Mech. Vol. 49 nr (2011) 1049–1058.

DOI: 10.7494/mech.2012.31.1.29

Google Scholar

[9] H. Ma, G. Tang, W. Hu, Feedforward and feedback optimal control with memory for offshore platforms under irregular wave forces, J. Sound Vib. 328 (2009) 369–381. doi: 10. 1016/j. jsv. 2009. 08. 025.

DOI: 10.1016/j.jsv.2009.08.025

Google Scholar

[10] G. -Y. Tang, D. -X. Gao, Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances, Nonlinear Anal. Theory, Methods Appl. 66 (2007) 403–414. doi: 10. 1016/j. na. 2005. 11. 035.

DOI: 10.1016/j.na.2005.11.035

Google Scholar

[11] G. -Y. Tang, B. -L. Zhang, Y. -D. Zhao, S. -M. Zhang, Optimal sinusoidal disturbances damping for singularly perturbed systems with time-delay, J. Sound Vib. 300 (2007) 368–378. doi: 10. 1016/j. jsv. 2006. 08. 034.

DOI: 10.1016/j.jsv.2006.08.034

Google Scholar

[12] R.T. Evans, J.L. Speyer, C.H. Chuang, Solution of a periodic optimal control problem by asymptotic series, J. Optim. Theory Appl. 52 (1987) 343–364. doi: 10. 1007/BF00938212.

DOI: 10.1007/bf00938212

Google Scholar

[13] C. Maffezzoni, Hamilton-Jacobi theory for periodic control problems, J. Optim. Theory Appl. 14 (1974) 21–29. doi: 10. 1007/BF00933172.

DOI: 10.1007/bf00933172

Google Scholar

[14] M. Jabłoński, A. Ozga, Determining the distribution of values of stochastic impulses acting on a discrete system in relation to their intensity, Acta Phys. Pol. A. 121 (2012) 174–178.

DOI: 10.12693/aphyspola.121.a-174

Google Scholar

[15] M. Sibielak, J. Konieczny, J. Kowal, Optimal control of slow-active vehicle suspension-results of experimental data, J. Low …. (2013).

DOI: 10.1260/0263-0923.32.1-2.99

Google Scholar

[16] W. Rączka, J. Konieczny, M. Sibielak, Mathematical Model of a Shape Memory Alloy Spring Intended for Vibration Reduction Systems, Solid State Phenom. 177 (2011) 65–75. doi: 10. 4028/www. scientific. net/SSP. 177. 65.

DOI: 10.4028/www.scientific.net/ssp.177.65

Google Scholar

[17] S.M. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename, L. Dugard, Semi-Active Suspension Control Design for Vehicles, (2010).

DOI: 10.1016/b978-0-08-096678-6.00019-5

Google Scholar

[18] C.H. Hansen, S.D. Snyder, Active Control of Noise and Vibration, (1997).

Google Scholar

[19] C. Fuller, S. Elliott, P. Nelson, Active Control of Vibration, 1st Editio, Academic Press, (1996).

Google Scholar

[20] A. Preumont, K. Seto, Active Control of Structures, John Wiley & Sons, Ltd, Chichester, UK, 2008. doi: 10. 1002/9780470715703.

Google Scholar

[21] D. Karnopp, Vehicle Stability, Marcel Dekker, (2004).

Google Scholar

[22] M. Jablonski, A. Ozga, Determining the Distribution of Values of Stochastic Impulses Acting on a Discrete System in Relation to Their Intensity, Acta Phys. Pol. A. 121 (2012) 174–178.

DOI: 10.12693/aphyspola.121.a-174

Google Scholar

[23] M. Jabłoński, A. Ozga, Statistical Characteristics of the Damped Vibrations of a String Excited by Stochastic Forces, Arch. Acoust. 612 (2009) 601–612.

Google Scholar