Formation and Properties of the PVDF/PEO-Coatings on Commercially Pure Titanium

Article Preview

Abstract:

Plasma electrolytic oxidation (PEO) of commercially pure titanium VT1-0 was performed in phosphate electrolyte. High-frequency 200 kHz bipolar signal at a duty cycle D=0.1 was used to form the oxide coatings. Polymer-containing anticorrosion coatings were formed by applying polyvinylidene fluoride (PVDF) on the base PEO-coating. The results of electrochemical tests have showed a decrease of corrosion current density by 2 orders of magnitude (down to 1.5∙10-10 А∙сm-2) and the corresponding increase of the polarization resistance (up to 1.9∙108 Оhm∙сm2) in comparison with the metallic substrate.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

144-152

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] S. Durdu, M. Usta, The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation, Ceram. Int. 40 (2014) 3627-3635.

DOI: 10.1016/j.ceramint.2013.09.062

Google Scholar

[2] S.V. Gnedenkov, S.L. Sinebryukhov, D. V Mashtalyar, V.S. Egorkin, A.K. Tsvetnikov, A.N. Minaev, Charge transfer at the antiscale composite layer–electrolyte interface, Prot. Met. 43 (2007) 667-673.

DOI: 10.1134/s0033173207070090

Google Scholar

[3] V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A. Yu. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Obtaining ZrO2 + CeOx + TiO2/Ti compositions by plasma electrolytic oxidation of titanium and investigating their properties / Prot. Met. Phys. Chem. Surf. 47 (2011).

DOI: 10.1134/s2070205111050145

Google Scholar

[4] S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz, A.S. Gnedenkov, I.E. Vyaliy, D.V. Mashtalyar, V.S. Egorkin, Plasma electrolytic oxidation coatings formed with microsecond current pulses / Solid State Phenom. 213 (2014) 149-153.

DOI: 10.4028/www.scientific.net/ssp.213.149

Google Scholar

[5] V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte / Russ. J. Appl. Chem. 83 (2010) 664-670.

DOI: 10.1134/s1070427210040178

Google Scholar

[6] G.A. Lavrushin, S.V. Gnedenkov, P.S. Gordienko, S.L. Sinebryukhov, Cyclic strength of titanium alloys, anodized under micro-arc conditions, in sea water, Prot. Met. 38 (2002) 363-365.

DOI: 10.1023/a:1019665402579

Google Scholar

[7] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, A. Matthews, PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes / Surf. Coat. Technol. 204 (2010).

DOI: 10.1016/j.surfcoat.2009.12.024

Google Scholar

[8] S.L. Sinebryukhov, M.V. Sidorova, V.S. Egorkin, P.M. Nedozorov, A. Yu. Ustinov, E.F. Volkova, S.V. Gnedenkov, Protective oxide coatings on Mg–Mn–Ce, Mg–Zn–Zr, Mg–Al–Zn–Mn, Mg–Zn–Zr–Y, and Mg–Zr–Nd magnesium-based alloys / Prot. Met. Phys. Chem. Surf. 48 (2012).

DOI: 10.1134/s2070205112060147

Google Scholar

[9] Y.L. Wang, M. Wang, M. Zhou, Z.H. Jiang, Characterization of graphite containing ceramic coating prepared on carbon steel by plasma electrolytic oxidation / Appl. Mech. Mater. 271/272 (2012) 46-49.

DOI: 10.4028/www.scientific.net/amm.271-272.46

Google Scholar

[10] Y. Gao, A. Yerokhin, A. Matthews, Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings / Appl. Surf. Sci. 316 (2014) 558-567.

DOI: 10.1016/j.apsusc.2014.08.035

Google Scholar

[11] K. Du, X. Guo, Q. Guo, F. Wang, Y. Tian, A monolayer PEO coating on 2024 Al alloy by transient self-feedback control mode / Mater. Lett. 91 (2013) 45-49.

DOI: 10.1016/j.matlet.2012.09.055

Google Scholar

[12] E. Matykina, R. Arrabal, A. Pardo, M. Mohedano, B. Mingo, I. Rodríguez, J. González, Energy-efficient PEO process of aluminium alloys / Mater. Lett. 127 (2014) 13-16.

DOI: 10.1016/j.matlet.2014.04.077

Google Scholar

[13] T. Ishizaki, M. Okido, Y. Masuda, N. Saito, M. Sakamoto, Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor-phase method / Langmuir 27 (2011) 6009-6017.

DOI: 10.1021/la200122x

Google Scholar

[14] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emel'yanenko, D.A. Alpysbaeva, L.B. Boinovich, Features of the Occurrence of Electrochemical Processes in Contact of Sodium Chloride Solutions with the Surface of Superhydrophobic Coatings on Titanium / Russ. J. Electrochem+. 48 (2012).

DOI: 10.1134/s1023193512020048

Google Scholar

[15] S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, L.B. Boinovich, Formation and electrochemical properties of the superhydrophobic nanocomposite coating on Mg–Mn–Ce magnesium alloy / Surf. Coat. Tech. 232 (2013).

DOI: 10.1016/j.surfcoat.2013.05.020

Google Scholar

[16] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emelyanenko, L.B. Boinovich, Electrochemical properties of the superhydrophobic coatings on metals and alloys / J. Taiwan Inst. Chem. E. 85 (2014) 3075-3080.

DOI: 10.1016/j.jtice.2014.08.025

Google Scholar

[17] H. Liu, S. Szunerits, W. Xu, R. Boukherroub, Preparation of superhydrophobic coatings on zinc as effective corrosion barriers / ACS Appl. Mater. Interfaces 1 (2009) 1150-1153.

DOI: 10.1021/am900100q

Google Scholar

[18] Q.Q. Shang, M.Y. Wang, H. Liu, L.J. Gao, G.M. Xiao, Facile fabrication of water repellent coatings from vinyl functionalized SiO2 spheres / J. Coating. Tech. Res. 10 (2013) 465-473.

DOI: 10.1007/s11998-012-9465-z

Google Scholar

[19] J.F. Ou, W.H. Hu, M.S. Xue, F.J. Wang, W. Li, One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys / ACS Appl. Mater. Interfaces 5 (2013) 9867-9871.

DOI: 10.1021/am402303j

Google Scholar

[20] Z.X. She, Q. Li, Z.W. Wang, L.Q. Li, F.A. Chen, J.C. Zhou, Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability / Chem. Eng. J. 228 (2013) 415-424.

DOI: 10.1016/j.cej.2013.05.017

Google Scholar

[21] J.L. Song, Y. Lu, S. Huang, X. Liu, L.B. Wu, W.J. Xu, A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces / Appl. Surf. Sci. 266 (2013) 445-450.

DOI: 10.1016/j.apsusc.2012.12.063

Google Scholar

[22] S.R. Yu, J.A. Liu, W. Diao, W. Li, Preparation of a bionic microtexture on X52 pipeline steels and its superhydrophobic behavior / J. Alloys Compounds 585 (2014) 689-695.

DOI: 10.1016/j.jallcom.2013.09.042

Google Scholar

[23] L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov, A.K. Zaretskaya, Anticorrosion performance of composite coatings on low-carbon steel containing highly- and superhydrophobic layers in combination with oxide sublayers / Corros. Sci. 55 (2012).

DOI: 10.1016/j.corsci.2011.10.023

Google Scholar

[24] C.L. Zhou, X. Lu, Z. Xin, J. Liu, Y.F. Zhang, Hydrophobic benzoxazine-cured epoxy coatings for corrosion protection / Progr. Org. Coat. 76 (2013) 1178-1183.

DOI: 10.1016/j.porgcoat.2013.03.013

Google Scholar

[25] D.Y. Yu, J.T. Tian, J.H. Dai, X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater / Electrochim. Acta 97 (2013) 409-419.

DOI: 10.1016/j.electacta.2013.03.071

Google Scholar

[26] C. Peng, S. Xing, Z. Yuan, J. Xiao, C. Wang, J. Zeng, Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade, Appl. Surf. Sci. 259 (2012) 764-768.

DOI: 10.1016/j.apsusc.2012.07.118

Google Scholar

[27] A.A. Ribeiro, L.G. Vaz, A.C. Guastaldi, J.S.C. Campos, Adhesion strength characterization of PVDF/HA coating on cp Ti surface modified by laser beam irradiation / Appl. Surf. Sci. 258 (2012) 10110-10114.

DOI: 10.1016/j.apsusc.2012.06.084

Google Scholar

[28] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyaliy, A.M. Emelyanenko, L.B. Boinovich, Protective properties of the nanocomposite coatings on Mg alloy / Solid State Phenom. 213 (2014) 176-179.

DOI: 10.4028/www.scientific.net/ssp.213.176

Google Scholar