Duty Cycle of the Polarizing Signal Influence on Morphology and Properties of the PEO-Coating on Aluminium Alloy

Article Preview

Abstract:

Influence of the polarizing signal parameter used during plasma electrolytic oxidation (PEO) on the composition, morphology and properties of protective coatings formed on aluminum alloy in tartrate-containing electrolyte has been presented. It was established, that using of the short-pulse bipolar polarizing signal (τ=5 μs) facilitates the reduction of porosity and roughness of the formed PEO-layers. This, in turn, increases wearproof and protective corrosion characteristics of the treated alloy surface. Increasing the duty cycle (D) affects on the chemical composition and the thickness of the obtained coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

121-129

Citation:

Online since:

October 2015

Export:

Price:

* - Corresponding Author

[1] V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, S. Rohani, Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior / Surf. Coat. Tech. 226 (2013) 100-107.

DOI: 10.1016/j.surfcoat.2013.03.041

Google Scholar

[2] S.L. Sinebryukhov, M.V. Sidorova, V.S. Egorkin, P.M. Nedozorov, A. Yu. Ustinov, E.F. Volkova, S.V. Gnedenkov, Protective oxide coatings on Mg–Mn–Ce, Mg–Zn–Zr, Mg–Al–Zn–Mn, Mg–Zn–Zr–Y, and Mg–Zr–Nd magnesium-based alloys / Prot. Met. Phys. Chem. Surf. 48 (2012).

DOI: 10.1134/s2070205112060147

Google Scholar

[3] B.R. Locke, S.M. Thagard, Analysis of Chemical Reactions in Gliding-Arc Reactors With Water Spray Into Flowing Oxygen / IEEE T. Plasma Sci. 37 (2009) 494-501.

DOI: 10.1109/tps.2008.2011797

Google Scholar

[4] Y. Guan, Y. Xia, G. Li, Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO / Surf. Coat. Tech. 202 (2008) 4602-4612.

DOI: 10.1016/j.surfcoat.2008.03.031

Google Scholar

[5] K. Du, X. Guo, Q. Guo, F. Wang, Y. Tian, A monolayer PEO coating on 2024 Al alloy by transient self-feedback control mode / Mater. Lett. 91 (2013) 45-49.

DOI: 10.1016/j.matlet.2012.09.055

Google Scholar

[6] R.O. Hussein, X. Nie, D.O. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing / Electrochim. Acta 112 (2013) 111-119.

DOI: 10.1016/j.electacta.2013.08.137

Google Scholar

[7] E. Matykina, R. Arrabal, A. Pardo, M. Mohedano, B. Mingo, I. Rodríguez, J. González, Energy-efficient PEO process of aluminium alloys / Mater. Lett. 127 (2014) 13-16.

DOI: 10.1016/j.matlet.2014.04.077

Google Scholar

[8] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, A. Matthews, PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes / Surf. Coat. Technol. 204 (2010).

DOI: 10.1016/j.surfcoat.2009.12.024

Google Scholar

[9] S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz, A.S. Gnedenkov, I.E. Vyaliy, D.V. Mashtalyar, V.S. Egorkin, Plasma Electrolytic Oxidation Coatings on Titanium Formed with Microsecond Current Pulses, Solid State Phenom. 213 (2014) 149-153.

DOI: 10.4028/www.scientific.net/ssp.213.149

Google Scholar

[10] Y.L. Wang, M. Wang, M. Zhou, Z.H. Jiang, Characterization of graphite containing ceramic coating prepared on carbon steel by plasma electrolytic oxidation / Appl. Mech. Mater. 271/272 (2012) 46-49.

DOI: 10.4028/www.scientific.net/amm.271-272.46

Google Scholar

[11] V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A. Yu. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Obtaining ZrO2 + CeOx + TiO2/Ti compositions by plasma electrolytic oxidation of titanium and investigating their properties / Prot. Met. Phys. Chem. Surf. 47 (2011).

DOI: 10.1134/s2070205111050145

Google Scholar

[12] R.O. Hussein, D.O. Northwood, X. Nie, The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy / J. Alloy. Compd. 541 (2012) 41-48.

DOI: 10.1016/j.jallcom.2012.07.003

Google Scholar

[13] V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte / Russ. J. Appl. Chem. 83 (2010) 664-670.

DOI: 10.1134/s1070427210040178

Google Scholar

[14] R.O. Hussein, X. Nie, D.O. Northwood, A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation / Mater. Chem. Phys. 134 (2012) 484-492.

DOI: 10.1016/j.matchemphys.2012.03.020

Google Scholar

[15] Y. Gao, A. Yerokhin, A. Matthews, Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings / Appl. Surf. Sci. 316 (2014) 558-567.

DOI: 10.1016/j.apsusc.2014.08.035

Google Scholar

[16] S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, L.B. Boinovich, Formation and electrochemical properties of the superhydrophobic nanocomposite coating on Mg–Mn–Ce magnesium alloy / Surf. Coat. Tech. 232 (2013).

DOI: 10.1016/j.surfcoat.2013.05.020

Google Scholar

[17] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emelyanenko, L.B. Boinovich, Electrochemical properties of the superhydrophobic coatings on metals and alloys / J. Taiwan Inst. Chem. E. 85 (2014) 3075-3080.

DOI: 10.1016/j.jtice.2014.08.025

Google Scholar

[18] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyaliy, A.M. Emelyanenko, L.B. Boinovich, Protective properties of the nanocomposite coatings on Mg alloy / Solid State Phenom. 213 (2014) 176-179.

DOI: 10.4028/www.scientific.net/ssp.213.176

Google Scholar

[19] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emel'yanenko, D.A. Alpysbaeva, L.B. Boinovich, Features of the Occurrence of Electrochemical Processes in Contact of Sodium Chloride Solutions with the Surface of Superhydrophobic Coatings on Titanium / Russ. J. Electrochem+. 48 (2012).

DOI: 10.1134/s1023193512020048

Google Scholar

[20] J.L. Song, W.J. Xu, X. Liu, Y. Lu, Z.F. Wei, L.B. Wu, Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method / Chem. Eng. J. 211/212 (2012) 143-152.

DOI: 10.1016/j.cej.2012.09.094

Google Scholar

[21] A.A. Ribeiro, L.G. Vaz, A.C. Guastaldi, J.S.C. Campos, Adhesion strength characterization of PVDF/HA coating on cp Ti surface modified by laser beam irradiation / Appl. Surf. Sci. 258 (2012) 10110-10114.

DOI: 10.1016/j.apsusc.2012.06.084

Google Scholar

[22] L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov, A.K. Zaretskaya, Anticorrosion performance of composite coatings on low-carbon steel containing highly- and superhydrophobic layers in combination with oxide sublayers / Corros. Sci. 55 (2012).

DOI: 10.1016/j.corsci.2011.10.023

Google Scholar

[23] P.M. Barkhudarov, P.B. Shah, E.B. Watkins, D.A. Doshi, C.J. Brinker, J. Majewski, Corrosion inhibition using superhydrophobic films / Corros. Sci. 50 (2008) 897-902.

DOI: 10.1016/j.corsci.2007.10.005

Google Scholar

[24] H. Liu, S. Szunerits, W. Xu, R. Boukherroub, Preparation of superhydrophobic coatings on zinc as effective corrosion barriers / ACS Appl. Mater. Interfaces 1 (2009) 1150-1153.

DOI: 10.1021/am900100q

Google Scholar

[25] T. Liu, S. Chen, S. Cheng, J. Tian, X. Chang, Y. Yin, Corrosion behavior of super-hydrophobic surface on copper in seawater / Electrochim. Acta 52 (2007) 8003-8007.

DOI: 10.1016/j.electacta.2007.06.072

Google Scholar

[26] J.F. Ou, W.H. Hu, M.S. Xue, F.J. Wang, W. Li, One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys / ACS Appl. Mater. Interfaces 5 (2013) 9867-9871.

DOI: 10.1021/am402303j

Google Scholar

[27] Z.X. She, Q. Li, Z.W. Wang, L.Q. Li, F.A. Chen, J.C. Zhou, Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability / Chem. Eng. J. 228 (2013) 415-424.

DOI: 10.1016/j.cej.2013.05.017

Google Scholar

[28] J.L. Song, Y. Lu, S. Huang, X. Liu, L.B. Wu, W.J. Xu, A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces / Appl. Surf. Sci. 266 (2013) 445-450.

DOI: 10.1016/j.apsusc.2012.12.063

Google Scholar

[29] S.R. Yu, J.A. Liu, W. Diao, W. Li, Preparation of a bionic microtexture on X52 pipeline steels and its superhydrophobic behavior / J. Alloys Compounds 585 (2014) 689-695.

DOI: 10.1016/j.jallcom.2013.09.042

Google Scholar

[30] R. Qiu, D. Zhang, P. Wang, Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition / Corros. Sci. 66 (2013) 350-359.

DOI: 10.1016/j.corsci.2012.09.041

Google Scholar

[31] J.C. Tuberquia, N. Nizamidin, R.R. Harl, J. Albert, J. Hunter, B.R. Rogers, G. K, Jennings, Surface-initiated polymerization of superhydrophobic polymethylene / J. Am. Chem. Soc. 132 (2010) 5725-5734.

DOI: 10.1021/ja9086193

Google Scholar

[32] D.Y. Yu, J.T. Tian, J.H. Dai, X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater / Electrochim. Acta 97 (2013) 409-419.

DOI: 10.1016/j.electacta.2013.03.071

Google Scholar

[33] L. Zhu, Y. Jin, A novel method to fabricate water-soluble hydrophobic agent and superhydrophobic film on pretreated metals / Appl. Surf. Sci. 253 (2007) 3432-3439.

DOI: 10.1016/j.apsusc.2006.07.050

Google Scholar

[34] C.L. Zhou, X. Lu, Z. Xin, J. Liu, Corrosion resistance of novel silane-functional polybenzoxazine coating on steel / Corros. Sci. 70 (2013) 145-151.

DOI: 10.1016/j.corsci.2013.01.023

Google Scholar

[35] T. Ishizaki, M. Okido, Y. Masuda, N. Saito, M. Sakamoto, Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor-phase method / Langmuir 27 (2011) 6009-6017.

DOI: 10.1021/la200122x

Google Scholar

[36] Q.Q. Shang, M.Y. Wang, H. Liu, L.J. Gao, G.M. Xiao, Facile fabrication of water repellent coatings from vinyl functionalized SiO2 spheres / J. Coating. Tech. Res. 10 (2013) 465-473.

DOI: 10.1007/s11998-012-9465-z

Google Scholar