A Review on BaxSr1-xFe12O19 Hexagonal Ferrites for use in Electronic Devices

Article Preview

Abstract:

The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component which has great to technological applications because of their ferromagnetic and insulating properties at room temperature. Among such ferrites, the hexagonal ones (hexaferrites) have long been used for permanent magnets and are of interest for microwave applications. The hexaferrite M-type has a structure built up from the S blocks interposed by the R block and are symbolically described as RSR*S*. In the last decades there has been great interest in the hexaferrites M-Type for applications as electronic components for mobile and wireless communications at microwave/GHz frequencies, electromagnetic wave absorbers for electromagnetic compatibility (EMC), radar absorting material (RAM) and stealth technologies and as composite materials. This review aimed study the structure, magnetic and dielectric properties of the hexaferrite BaxSr1-xFe12O19, which is a promising material for electronic devices and for small dielectric resonator antennas (MRA).The outline of this Review Paper is as follows:

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 202)

Pages:

1-64

Citation:

Online since:

May 2013

Export:

Price:

[1] R. Valenzuela, Magnetic Ceramics, 1 ed, Great Britain: Cambridge University Press, 1994.

Google Scholar

[2] A. Goldman, Modern Ferrite Technology, 2 ed. United States of American: Springer, 2006.

Google Scholar

[3] J. F. Wang, C. B. Ponton, I. R. Harris, A study of the magnetic properties of hydrothermally synthesized Sr hexaferrite with Sm substitution, J. Magn Magn. Mater. 234 (2) (2001) 233-240.

DOI: 10.1016/s0304-8853(01)00366-3

Google Scholar

[4] Z. W. Li, C. K. Ong, F. L. Wei, X. Z. Zhou, J. H. Zhao, A. H. Morrish, Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles, Phys. Rev. B 62 (2000) 6530-6537.

DOI: 10.1103/physrevb.62.6530

Google Scholar

[5] Z. Haijun, Y. Xi, Z. Liangying, The preparation and microwave properties of Ba2ZnxCo2−xFe28O46 hexaferrites, J. Magn Magn. Mater. 241 (2-3) (2002) 441-446.

DOI: 10.1016/s0304-8853(01)00447-4

Google Scholar

[6] A. J. O. Cabral. Ogasawara, T. Tavares, L. M. Preparação de Óxido de Ferro Micrométrico para Aplicação em Cerâmicas Magnéticas por Moagem de Alta Energia, Anais 48o Congresso Brasileiro de Cerâmica, 2004 Curitiba - PR.

DOI: 10.26678/abcm.conem2018.con18-1462

Google Scholar

[7] S. P. Marshall, J. B. Sokoloff, Spin-wave spectrum for barium ferrite, J. Appl. Phys. 67 (4) (1990) 2017-2023.

Google Scholar

[8] V. K. S. Sankaranarayanan, Q. A. Pankhurst, D. P. E Dikson, C. E. Johnson, Ultrafine particles of barium ferrite from a citrate precursor, J. Magn Magn. Mater. 120 (1-3) (1993) 73-75.

DOI: 10.1016/0304-8853(93)91290-n

Google Scholar

[9] C. Surig, K. A. Hampel. D. Bonnenberg, Hexaferrite particles prepared by sol-gel technique, IEEE Trans. Magn. 30 (6) (1994) 4092-4093.

DOI: 10.1109/20.333999

Google Scholar

[10] R. C. Pullar, M. D. Taylor, D. Bhattacharya, Novel aqueous sol-gel preparation and characterization of barium M ferrite BaFe12O19 fibers, J. Mater. Sci. 32 (1997) 349-352.

Google Scholar

[11] S. E. Jacobo, C. Domingo-Pascual, R. Rodriguez-Clemente, M. A. Blesa, Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation, J. Mater. Sci. 32 (1997) 1025-1028.

DOI: 10.1023/a:1018582423406

Google Scholar

[12] P. Shi, S. D. Yoon, X. Zuo, I. Kozulin, S. A. Oliver, C. Vittoria, Microwave properties of pulsed laser deposited Sc-doped barium hexaferrite films, J. Appl. Phys. 87 (9) (2000) 4981-4983.

DOI: 10.1063/1.373222

Google Scholar

[13] M. Koleva, P. Atanasov, R. Tomov, O. Vankov, C. Matin, C. Ristoscu, I. Mihailescu, D. Iorgov, S. Angelova, C. Ghelev, N. Mihailov, Pulsed laser deposition of barium hexaferrite (BaFe12O19) thin films, Appl. Surf. Sci. 154-155 (2000) 485-491.

DOI: 10.1016/s0169-4332(99)00404-3

Google Scholar

[14] R. C. Buchanan. Ceramic Materials for Electronics: processing, properties and applications. 2 ed. rev. expand. United States of American: Marcel Dekker INC. 1991.

Google Scholar

[15] J. Smith, H. P. J. Wijn. Ferrites, New York: John Wiley & Sons, 1959.

Google Scholar

[16] X. Obradors, A. Collomb, M. Pernet, D. Samara, J. C. Joubert, X-ray analysis of the structural and dynamical properties of BaFe12O19 hexagonal ferrite at room temperature, J. Solid State Chem. 56 (1985) 171-181.

DOI: 10.1016/0022-4596(85)90054-4

Google Scholar

[17] C. M. Fang, F. Kools, R. Metselaar, G. With, R. A. Groot, Magnetic and electronic properties of strontium hexaferrites SrFe12O19 from first-principles calculations, J. Phys-Condens. Mat. 15 (2003) 6229-6237.

DOI: 10.1088/0953-8984/15/36/311

Google Scholar

[18] F. Kools, Hard Ferrites, In: Concise Encyclopedia of Advanced Ceramic Materials. Ed. R. J. Brook, Pergamon Press, Oxford, 1991, pp.200-206.

DOI: 10.1016/b978-0-08-034720-2.50059-9

Google Scholar

[19] G. Albanese, M. Carbucicchio, L. Pareti, S. Rinaldi, E. Licchini, G. Slokar, Magnetic and Mössbauer study of Al, Ga, In and Sc-substituted Zn2-W hexagonal ferrites, J. Magn Magn. Mater. 15-18 (3) 1980 1453-1454.

DOI: 10.1016/0304-8853(80)90365-0

Google Scholar

[20] G. Turilli, F. Licci, S. Rinaldi, Mn+2, Ti+4+ substituted barium ferrite, J. Magn Magn. Mater. 59 (1986) 127-131.

DOI: 10.1016/0304-8853(86)90019-3

Google Scholar

[21] L. Lechevallier, J. M. Le Breton, Substitution effects in M-type hexaferrite powders investigated by Mössbauer spectrometry, J. Magn Magn. Mater. 290-291 (2005) 1237–1239.

DOI: 10.1016/j.jmmm.2004.11.411

Google Scholar

[22] L. Lechevallier, J. M. Le Breton, J. F. Wang, I. R. Harris, Structural analysis of hydrothermally synthesized Sr1-xSmxFe12O19 hexagonal ferrites, J. Magn Magn. Mater. 269 (2004) 192-196.

DOI: 10.1016/s0304-8853(03)00591-2

Google Scholar

[23] M. A. Vinnik, Phase relationships in the BaO-CoO-Fe2O3 system, J. Russ. Inorg. Chem. 10 (1965) 1164-1167.

Google Scholar

[24] S. I. Kuznetsova, E. P. Naiden, T. N. Stepanova, Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41, Inorg. Mater. 24:66 (1988) 856-859.

Google Scholar

[25] J. Drobek, W. C. Bigelow, R. G. Wells, Electron microscopic studies of growth structure in hexagonal ferrites, J. Am. Ceram. Soc. 44 (6) (1961) 262-264.

DOI: 10.1111/j.1151-2916.1961.tb15375.x

Google Scholar

[26] M. Erchak Jr, I. Funkuchen, R. Ward, Reaction between ferric oxide and barium carbonate in the solid phase. Identification of phases by X-ray diffraction, J Am. Ceram. Soc. 68 (1946) 2085–2093.

DOI: 10.1021/ja01214a063

Google Scholar

[27] H. J. Van Hook, Thermal stability of barium ferrite (BaFe12O19), J. Am. Ceram. Soc. 47 (11) (1964) 579-581.

DOI: 10.1111/j.1151-2916.1964.tb13821.x

Google Scholar

[28] B. T. Shirk, Ba2Fe6O11: A new metastable compound, Mater. Res. Bull. 5 (10) (1970) 771-777.

DOI: 10.1016/0025-5408(70)90091-7

Google Scholar

[29] Y. Goto, T. Takada, Phase diagram of the system BaO-Fe2O3, J. Am. Ceram. Soc. 43 (3) (1960) 150-153.

Google Scholar

[30] G. Slocari, Phase equilibrium in the subsystem BaO-Fe2O3-BaO.6 Fe2O3, J. Am. Ceram. Soc. 56 (9) (1973) 489-490.

DOI: 10.1111/j.1151-2916.1973.tb12531.x

Google Scholar

[31] A. G. Sadler, J. Can. Ceram. Soc. 34 (1965) 155.

Google Scholar

[32] K. Haneda, C. Miyakawa, H. Kojima, Preparation of high-coercivity BaFe12O19, J. Amer. Ceram. Soc. 7 (8) (1974) 354-357.

DOI: 10.1111/j.1151-2916.1974.tb10921.x

Google Scholar

[33] P. Batti, Equilibrium of the system BaO-Fe2O3 (in Italian), Ann. Chim. (Rome) 50 (1960) 1461-1478.

Google Scholar

[34] H. Stablein, W. May, Ber Deut Keram Geselschaft 46 (1969) 69.

Google Scholar

[35] J. S. Reed, R. M. Fulrath, Characterization and sintering behavior of Ba and Sr ferrites, J. Am. Ceram. Soc. 56 (4) (1973) 207-211.

DOI: 10.1111/j.1151-2916.1973.tb12458.x

Google Scholar

[36] B. Durrant, J. M. Paris. Some characteristics of the ferrite Ba3Fe(II)4Fe(III)28O49, J. Mater. Sci. Lett. 16 (1981) 274-275.

DOI: 10.1007/bf00552085

Google Scholar

[37] J. Lipka, A. Grusková, M. Michalıková, M. Miglierini, J. Sláma, I. Tóth. The optimalization of the Ba-hexagonal ferrite phase formation, J. Magn Magn. Mater. 140–144 (1995) 2209-2210.

DOI: 10.1016/0304-8853(94)01198-2

Google Scholar

[38] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres, J. Euro. Ceram. Soc. 22 (12) (2002) 2039-2045.

DOI: 10.1016/s0955-2219(01)00518-0

Google Scholar

[39] R. C. Pullar, S. G. Appleton, A. K. Bhattacharya, The manufacture, characterisation and microwave properties of aligned M ferrite fibres, J. Magn Mager Mat. 186 (3) (1998) 326-332.

DOI: 10.1016/s0304-8853(98)00107-3

Google Scholar

[40] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibres, J. Mater. Sci. 32 (2) (1997) 349-352.

Google Scholar

[41] R. C. Pullar, A. K. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol–gel precursor, without formation of the α-BaFe2O4 intermediate phase, Mater. Lett. 57 (3) (2002) 537-542.

DOI: 10.1016/s0167-577x(02)00825-x

Google Scholar

[42] F. M. M. Pereira, Estudo das propriedades dielétricas e magnéticas da hexaferrita tipo M (BaxSr1-xFe12O19) para uso em dispositivos eletrônicos. Doctorate Thesis, Universidade Federal do Ceará (2009), pp.1-126.

Google Scholar

[43] R. C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog.Mater. Sci. 57 (2012) 1191–1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[44] V. Biondo. Caracterização estrutural e magnética do sistema Fex(Cr2O3)1-x submetido à moagem de alta energia. M. Sc. (Physics) Dissertation, Universidade Estadual de Maringá (2005), pp.1-128.

Google Scholar

[45] C. A. M. Van den Broek, A. L. Stuijts, Ferroxdure, Philips Techn. Rev. 37 (97) (1977) 157-175.

Google Scholar

[46] Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 84-0757).

Google Scholar

[47] Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 33-1340)

Google Scholar

[48] Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 72-0469).

Google Scholar

[49] R. Martinez-Garcia, E. Reguera Ruiz, E. Estevez Rams, Structural characterization of low temperature synthesized SrFe12O19, Mater. Lett. 50 (2-3), 183–187 (2001).

DOI: 10.1016/s0167-577x(01)00222-1

Google Scholar

[50] M. Sivakumar, A. Gedanken, W. Zhong, Y. W. Du, D. Bhattacharya, Y. Yeshurun, I. Felner, Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5, J. Magn. Magn. Mater. 268 (1-2), (2004) 95–104.

DOI: 10.1016/s0304-8853(03)00479-7

Google Scholar

[51] R. A. Young, The Rietveld Method, Oxford University Press/IUCr, Oxford, 1996, pp.1-38.

Google Scholar

[52] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression I, Biometrika 37 (1950) 409-428.

DOI: 10.1093/biomet/37.3-4.409

Google Scholar

[53] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression II, Biometrika 38 (1951) 159-178.

DOI: 10.1093/biomet/38.1-2.159

Google Scholar

[54] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression III, Biometrika 58 (1971) 1-19.

DOI: 10.2307/2334313

Google Scholar

[55] R. Hill, J. H. D. Flack, The use of the Durbin-Watson d statistic in Rietveld analysis, J. Appl. Crystallogr. 20 (1987) 356-361.

DOI: 10.1107/s0021889887086485

Google Scholar

[56] E. P Naiden, V. I. Itin, O. G.Terekhova, Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets, Tech. Phys. Lett. 29 (2003) 889-891.

DOI: 10.1134/1.1631354

Google Scholar

[57] C. D. Mee, J. C. Jeschke, Single-domain Properties in hexagonal ferrites, J. Appl. Phys. 34 (4) (1963) 1271-1272.

DOI: 10.1063/1.1729467

Google Scholar

[58] W. Roos, Formation of chemically coprecitated barium ferrite, J. Am. Ceram. Soc. 63 (11-12) (1980) 601-603.

Google Scholar

[59] H. Yamamoto, H. Kumehara, R. Takeuchi, N. Nishio, Magnetic Properties of Sr-M Ferrite Fine Particles, J. Phys. IV 7 (1997) C1–535.

DOI: 10.1051/jp4:19971219

Google Scholar

[60] A. G. Bagul, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, S. K. Date. In: Ferrites, Proc. ICF6, Kyoto and Tokyo. 1992. p.109

Google Scholar

[61] M. M. Rashad, I. A. Ibrahim. Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method, J. Magn. Magn. Mater. 323 (16) (2011) 2158-2164.

DOI: 10.1016/j.jmmm.2011.03.023

Google Scholar

[62] D. Lisjak, M. Drofenik, The mechanism of the low-temperature formation of barium hexaferrite, J. Euro. Ceram. Soc. 27 (16) (2007) 4515-4520.

DOI: 10.1016/j.jeurceramsoc.2007.02.202

Google Scholar

[63] D. Lisjak, M. Drofenik, The low-temperature formation of barium hexaferrites, J. Euro. Ceram. Soc. 26 (16) (2006) 3681-3686.

DOI: 10.1016/j.jeurceramsoc.2005.12.014

Google Scholar

[64] E. Matijevic, Uniform colloidal barium ferrite particles, J. Colloid. Interface. Sci. 117 (2) (1987) 593-595.

DOI: 10.1016/0021-9797(87)90426-7

Google Scholar

[65] I. J. Mccolm, N. J. Clark, Foming, Shaping and Working of High Performance Ceramics, Blackie, Glasgow, 1998, pp.1-338.

Google Scholar

[66] C. Surig, D. Bonnenberg, K. A. Hempel, P. K. Kerduck, H. J. Klaar, C. Sauer, Effects of Variations in Stoichiometry on M-Type Hexaferrites, J. Phys. IV 7 (1997) C1–315.

DOI: 10.1051/jp4:19971124

Google Scholar

[67] C. Surig, K. A. Hempel, C. Sauer, Influence of stoichiometry on hexaferrite structure, J. Magn. Magn. Mater. 157–158 (1996) 268-269.

Google Scholar

[68] W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, Q. Yan, Prepartion and magnetic properties of barium ferrite nanoparticles produced by citrate process, J. Am. Ceram. Soc. 80 (12) (1997) 3258-3262.

DOI: 10.1111/j.1151-2916.1997.tb03264.x

Google Scholar

[69] R. C Pullar, M. H. Stacey, M. D. Taylor, A. K. Bhattacharya, Decomposition, shrinkage and evolution with temperature of aligned hexagonal ferrite fibres, Acta Mater. 49 (2001) 4241-4250

DOI: 10.1016/s1359-6454(01)00304-4

Google Scholar

[70] V. K. S. Sankaranarayanan, Q. A. Pankhurst, D. P. E. Dickson, C. E. Johnson. An investigation of particle size effects in ultrafine barium ferrite, J. Magn. Magn. Mater. 125 (1993)199-208.

DOI: 10.1016/0304-8853(93)90838-s

Google Scholar

[71] Y. Li, Q. Wang, H. Yang, Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite, Current. Appl. Phys. 9 (6) (2009) 1375-1380.

DOI: 10.1016/j.cap.2009.03.002

Google Scholar

[72] J. Liu, W. Zhang, G. Cuijing, Y. Zeng. Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions, J. Alloys. Compd. 479 (1-2) (2009) 863-869.

DOI: 10.1016/j.jallcom.2009.01.081

Google Scholar

[73] J. Huang, H. Zhuang, W. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion, Mater. Res. Bull. 38 (1) (2003) 149-159.

DOI: 10.1016/s0025-5408(02)00979-0

Google Scholar

[74] A. Ataie, N. R. Piramoon, I. R. Harris, C. B. Ponton, Effect of hydrothermal synthesis environment on the particle morphology, chemistry and magnetic properties of barium hexaferrite, J. Mater. Sci. 30 (1995) 5600-5606.

DOI: 10.1007/bf00356692

Google Scholar

[75] M. Jean, V. Nachbaur, J. Bran, J-M. Le Breton. Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process, J. Alloys. Compd. 496 (1-2) (2010) 306-312.

DOI: 10.1016/j.jallcom.2010.02.002

Google Scholar

[76] J-H. Lee, T-B. Byeon, H-J. Lee, C-G. Kim, T-O. Kim, Preparation of Single Crystallites of Barium Ferrite by Hydrothermal Synthesis, J. Phys. IV 7 (1997) C1–751.

DOI: 10.1051/jp4:19971307

Google Scholar

[77] C. H. Lin, Z. W. Shih, T. S. Chin, M. L. Wang, Y. C. Yu, Hydrothermal processings to produce magnetic particulates, IEEE Trans. Magn. 26 (1) (1990) 15-17.

DOI: 10.1109/20.50476

Google Scholar

[78] X. Liu, J. Wang, L-M. Gan, Ng. Ser-Choon, Improving the magnetic properties of hydrothermally synthesized barium ferrite, J. Magn. Magn. Mater. 195 (1999) 452-459.

DOI: 10.1016/s0304-8853(99)00123-7

Google Scholar

[79] B. T. Shirk, W. R. Buesem, Magnetic properties of barium ferrite formed by crystallization of glass, J. Am. Ceram. Soc. 53 (4) (1970) 192-196.

DOI: 10.1111/j.1151-2916.1970.tb12069.x

Google Scholar

[80] H. Sato, T. Umeda. In: Ferrites, proc ICF6, Kyoto and Tokyo, 1992, p.1122.

Google Scholar

[81] S. K. Mishra, L. C. Pathak, V. Rao, Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process, Mater. Lett. 32 (2-3) (1997) 137-141.

DOI: 10.1016/s0167-577x(97)00027-x

Google Scholar

[82] K. S Martirosyan, E. Galstyan, S. M Hossain, Y-J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: Synthesis and magnetic properties, Mater. Sci. Eng, B 176 (1) (2011) 8-13.

DOI: 10.1016/j.mseb.2010.08.005

Google Scholar

[83] G. Elwin, I. P. Parkin, Q. T. Bui, L. F.Barquin, Self-propagating high-temperature synthesis of SrFe12O19 from reactions of strontium superoxide, iron metal and iron oxide powders, J. Mater. Sci. Lett. 16 (1997) 1237-1239.

Google Scholar

[84] Z. X. Tang, S. Nafis, C. M. Sorenson, G. C. H. Hadjipanayis, Magnetic properties of aerosol synthezed barium particles, IEEE Trans. Magn. Magn. 25 (5) (1989) 4236-4238.

DOI: 10.1109/20.42580

Google Scholar

[85] V. Pillai, P. Kumar, M. Hou, P. Ayyub, D. Shah, Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors, Adv. Colloid. Interface Sci. 55 (1995) 241-269.

DOI: 10.1016/0001-8686(94)00227-4

Google Scholar

[86] D. A. Rawlinson, P. A. Sermon, Nanoparticles of Barium Ferrite Synthesised Using a Water-in-Oil Microemulsion, J. Phys. IV 7 (1997) C1–755.

DOI: 10.1051/jp4:19971309

Google Scholar

[87] J. Dufour, L. Lopez, A. Formoso, C. Negro, R. Latorre, F. Lopez-Mateos, Mathematical model of goethite synthesis by oxyprecipitation of steel pickling liquors, Chem. Eng. J., Biochem. Eng. 59 (3) (1997) 287-291.

DOI: 10.1016/0923-0467(94)02950-4

Google Scholar

[88] J. Dufour, R. Latorre, C. Negro, E. M. Alcalá, A. Formoso, F. Lopez-Mateos, Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities, J. Magn. Magn. Mater. 172 (3) (1997) 308-316.

DOI: 10.1016/s0304-8853(97)00145-5

Google Scholar

[89] J. Dufour, R. Latorre, E. M. Alcala, C. Negro, A. Formoso, F. Lopez-Mateos, Synthesis of M-type hexaferrites from steel pickling liquors (ID 109), J. Magn. Magn. Mater. 157–158 (1996) 125-126.

DOI: 10.1016/0304-8853(95)01057-2

Google Scholar

[90] H. Stablein, In: Wohlfarth EP, editor. Ferromagnetic materials, v 3. Amsterdam: North-Holland Physics Publishing, 1982, p.441–602.

Google Scholar

[91] W. A. Kaczmarek, B. W. Ninham, Application of Mechanochemistry in Ferrite Materials Technology, J. Phys IV 7 (1997) C1–47.

DOI: 10.1051/jp4:1997106

Google Scholar

[92] H. M. Durr, Production of Ferrite Granules According to the Vacuum Hot Steam Process (VHSP), J. Phys. IV 7 (1997) C1–57

DOI: 10.1051/jp4:1997109

Google Scholar

[93] M. Sagawa, H. Nagata, T. Watanabe, O. Itatani, Rubber Isostatic Pressing (RIP) for Ferrite Magnets, J. Phys IV 7 (1997) C1–307.

DOI: 10.1051/jp4:19971120

Google Scholar

[94] N. Horiishi, S. Yamamoto. In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1041.

Google Scholar

[95] J. Ding, T. Tsuzuki, P. G. Mccormick, Ultrafine BaFe12O19 powder synthesised by mechanochemical processing, J. Magn. Magn. Mater. 177–181 (2) (1998) 931-932.

DOI: 10.1016/s0304-8853(97)00858-5

Google Scholar

[96] G. F Austin, G. D Mctaggart. In: Wang FFY (Ed.), Treatise on Materials Science and Technology, V. 9, New York: Academic Press; 1976, p.35.

Google Scholar

[97] H. G. Richter, H. Voller, Dew-T. Ber, 8 (1968) 214.

Google Scholar

[98] T. Suzuki, J. Magn. Soc. Jpn. 15 (1991) 833.

Google Scholar

[99] Y. Goto, K. Takahashi, Phase diagram of the SrO-Fe2O3 system in it´s Fe2O3-rich region and the growth of SrO.6 Fe2O3 single crystal in composition deviated melts, J. Jpn. Soc. Powd. Powd. Metall. 17 (5) (1971) 193-197.

DOI: 10.2497/jjspm.17.193

Google Scholar

[100] K. Goto, J. Jpn. Soc. Powd. Powd. Metall. 18 (6) (1972) 209-216. (Title in Japanese).

Google Scholar

[101] Y. Goto, M. Higashimoto, K. Takahashi, Equilibrium oxygen pressure over polycrystalline SrFe12O19 phase and its nonstoichiometry, J. Jpn. Soc. Powd. Powd. Metall. 21(1) (1974) 21-25.

DOI: 10.2497/jjspm.21.21

Google Scholar

[102] S. B. Narang, L. S. Hudiara, Microwave dielectric properties of M-Type barium, calcium and strontium hexaferrite substituted with Co and Ti, J. Ceram. Process. Res. 7 (2) (2006) 113-116.

Google Scholar

[103] N. Langhof, D. Selfert, M. Göbbels, J. Töpfer, Reinvestigation of the Fe-rich part of the pseudo-binary system SrO–Fe2O3, J. Solid. State Chem. 182 (2009) 2409-2416.

DOI: 10.1016/j.jssc.2009.05.039

Google Scholar

[104] E. Otsuki, Th. Matsuzawa, Magnetic Properties of SrO.nFe2O3 Powder Synthesized by Self-Combustion Process, J. Phys. IV 7 (1997) C1–323.

DOI: 10.1051/jp4:19971128

Google Scholar

[105] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Halide removal from BaM (BaFe12O19) and SrM (SrFe12O19) ferrite fibers via a steaming process, J. Mater. Res. 16 (11) (2001) 3162-3169.

DOI: 10.1557/jmr.2001.0436

Google Scholar

[106] L. A. Garcıa-Cerda, O. S. Rodrıguez-Fernández, P. J. Reséndiz-Hernández, Study of SrFe12O19 synthesized by the sol–gel method, J. Alloys. Compd. 369 (1-2) (2004) 182-184.

DOI: 10.1016/j.jallcom.2003.09.099

Google Scholar

[107] S. A. Seyyed Ebrahimi, A. J. Williams, N. Martinez, A. Ataie, A. Kianvash, C. B. Ponton, I. R. Harris, Treatment of Strontium Hexaferrite Powder Synthesized Conventionally to Produce High Coercivity, J. Phys. IV 7 (1997) C1–325.

DOI: 10.1051/jp4:19971129

Google Scholar

[108] A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method, J. Euro. Ceram. Soc. 21 (10-11) (2001) 1951-1955.

DOI: 10.1016/s0955-2219(01)00149-2

Google Scholar

[109] H. Kojima, C. Miyakawa, Bull. Res. Inst. Sci. Meas. 13 (1965) 105.

Google Scholar

[110] H. Kojima, In: Ferromagnetic Materials, Vol. 3. Amsterdam: North-Holland Physics Publishing; 1982, p.305–91.

Google Scholar

[111] W. Berger, F. Pawlek, Arch Eisenhuttenwesen 28 (1957) 101.

Google Scholar

[112] L. G. Van Uitert, Magnetic induction and coercive force data on members series BaAlxFe12-xO19 and related oxides, J. Appl. Phys. 28 (3) ((1957) 317-319.

DOI: 10.1063/1.1722738

Google Scholar

[113] R. Grossinger, M. Kupferling, J. C. Tellez Blanco, G. Wiesinger, M. Muller, G. Hilscher, Rare earth substitutions in M-type ferrites, IEEE Trans. Magn. 39 (5) (2003) 2911-2913.

DOI: 10.1109/tmag.2003.815745

Google Scholar

[114] G. Litsardakis, A. C Stergiou, J. Giorgiou, S. Sklavounos, D. Samaras, M. Pernet, Non-stoichiometric barium ferrite particles for high-density magnetic recording, J. Magn. Magn. Mater. 120 (1-3) (1993) 58-60.

DOI: 10.1016/0304-8853(93)91286-g

Google Scholar

[115] L. A. Bashkirov, Y. L. Kostyushko, Formation of ferrite-chromites BaFe10Cr2O19 and SrFe10Cr2O19 in the solid-phase reaction of Fe2O3 and Cr2O3 with barium or strontium carbonate, Russ. J. Appl. Chem. 78 (3) (2005) 351-355.

DOI: 10.1007/s11167-005-0294-z

Google Scholar

[116] P. Batti, G. Sloccari, One zone int the ternary system SrO-Fe2O3 corresponding to an Fe/Sr ration of one, Ann. Chim (Rome) 57 (1967) 777-804.

Google Scholar

[117] N. J. Shirtcliffe, S. Thompson, E. S. O'Keefe, S. Appleton, C. C. Perry, Mater, Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis, Res. Bull. 42 (2) (2007) 281-287.

DOI: 10.1016/j.materresbull.2006.06.001

Google Scholar

[118] Y. Liu, M. G. B. Drew, J. Wang, M. Zhang, Y. Liu, Efficiency and purity control in the preparation of pure and/or aluminum-doped barium ferrites by hydrothermal methods using ferrous ions as reactants, J. Magn. Magn. Mater. 322 (3) (2010) 366-374.

DOI: 10.1016/j.jmmm.2009.09.062

Google Scholar

[119] A. Deschamps, F. Bertaut, Sur la substitution de barym par une terre rare dans i´hexaferrite BaO.6Fe2O3, C. R. Hebd. Seans. Acad. Sci. 244 (1957) 3069-3072.

Google Scholar

[120] J. M. P. J. Verstegen, Luminescence of Mn2+ in SrGa12O19, LaMgGa11O19, and BaGa12O19, J. Solid. State Chem. 7 (4) (1973) 468-473.

DOI: 10.1016/0022-4596(73)90176-x

Google Scholar

[121] T. M Perekalina, M. A. Vinnik, R. I. Zvereva, A. D. Shchurova, Magnetic porperties of hexagonal ferrites weak Exchange coupling between subllatices. Zh. Eksp. Teor. Fiz. 59 (1970) 1490-1493.

Google Scholar

[122] T. M. Perakalina, V. P. Cheparin, Fiz. Tverd Tela 9 (1967) 217.

Google Scholar

[123] R. M. Cornell, U. Schwertmann, In: The Iron Oxides, Weinheim (Germany): VCH; 1996.

Google Scholar

[124] K. Watanabe, J. Kawabe, Growth and characterization of minute BaFe12–2xTixCoxO19 crystals from high-temperature solution, J. Mater. Chem. 7 (9) (1997) 1797-1800.

DOI: 10.1039/a702126g

Google Scholar

[125] B. Y. Wong, X. Sui, D. E. Laughlin, M. H. Kryder, Microstructural investigations of barium ferrite longitudinal thin‐film media, J. Appl. Phys. 75 (10) (1994) 5966-5968.

DOI: 10.1063/1.355527

Google Scholar

[126] X. Batlle, M. G. Del Muro, A. Labarta, Interaction effects and energy barrier distribution on the magnetic relaxation of nanocrystalline hexagonal ferrites, Phys. Rev. B 55 (10) (1997) 6440-6445.

DOI: 10.1103/physrevb.55.6440

Google Scholar

[127] D. Autissier, A. Podembski, C. Jacquiod, Microwaves Properties of M and Z Type Hexaferrites, J. Phys. IV 7 (1997) C1–409.

DOI: 10.1051/jp4:19971165

Google Scholar

[128] F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J. L. Sanchez, Magnetic and mössbauer study of rare-earth-substituted M-, W- and X-type hexagonal ferrites, J. Mater. Sci. 25 (6) (1990) 2765-2770.

DOI: 10.1007/bf00584876

Google Scholar

[129] J. F. Wang, C. B. Ponton, I. R. Harris, A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys. Compd. 403 (1-2) (2005) 104-109.

DOI: 10.1016/j.jallcom.2005.05.025

Google Scholar

[130] J. F. Wang, C. B. Ponton, R. Grossinger, I. R. Harris, A study of La-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys. Compd. 369 (1-2) (2004) 170-177.

DOI: 10.1016/j.jallcom.2003.09.097

Google Scholar

[131] H. Yamamoto, M. Isono, T. Kobayashi. Magnetic properties of Ba–Nd–Co system M-type ferrite fine particles prepared by controlling the chemical coprecipitation method, J. Magn. Magn. Mater. 295 (1) (2005) 51-56.

DOI: 10.1016/j.jmmm.2004.12.038

Google Scholar

[132] C. A. Stergiou, I. Manolakis, T. V. Yioultsis, G. Litsardakis, Dielectric and magnetic properties of new rare-earth substituted Ba-hexaferrites in the 2–18 GHz frequency range, J. Magn. Magn. Mater. 322 (9-12) (2010) 1532-1535.

DOI: 10.1016/j.jmmm.2009.07.082

Google Scholar

[133] D. Samaras, J. Georgiou, S. Panas, G. Litsardakis, Hexagonal ferrite particles for perpendicular recording prepared by ion exchange, IEEE Trans. Magn. 26 (1) (1990) 18-20.

DOI: 10.1109/20.50477

Google Scholar

[134] T-T. Fang, J. B. Hwang, F. S. Shiau, The role of silica in sintering barium ferrite, J. Mater. Sci. Let. 8 (12) (1989) 1386-1388.

DOI: 10.1007/bf00720195

Google Scholar

[135] F. Haberey, R. Leckebusch, M. Rosenberg, K. Sahl, Preparation and magnetic properties of LPE-grown hexagonal strontium aluminoferrite films, Mater. Res. Bull. 15 (4) (1980) 493-500.

DOI: 10.1016/0025-5408(80)90056-2

Google Scholar

[136] H. Taguchi, Recent Improvements of Ferrite Magnets, J. Phys. IV 7 (1997) C1–299.

DOI: 10.1051/jp4:19971118

Google Scholar

[137] O. T. Ozkan, H. Erkalfa, The effect of B2O3 addition on the direct sintering of barium hexaferrite, J. Eur. Ceram. Soc. 14 (4) (1994) 351-358.

DOI: 10.1016/0955-2219(94)90072-8

Google Scholar

[138] M. Tokar, Microstructure and Magnetic Properties of Lead Ferrite, J. Am. Ceram. Soc. 52 (6) (1969) 302-306.

Google Scholar

[139] M. P. Harmer, H. M. Chan, D. M. Smyth, Compositional control of ceramic microstructures - an overview, In: Mater. Res. Soc. Symp. Proc. (defect prop. process, high tech non-metal mater), 1986, p.125.

Google Scholar

[140] F. Kools, Reaction induced grain growth impediment during sintering of strontium hexaferrite with silica addition, Ber Dt. Keram. Ges. 55 (1978) 301-304.

DOI: 10.1016/0167-2738(85)90049-9

Google Scholar

[141] M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (3) (1965) 227-238.

DOI: 10.1016/0001-6160(65)90200-2

Google Scholar

[142] Y. Chen, D. E. Laughlin, X. Ma, M. H. Kryder, Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films, J. Appl. Phys. 81 (8) (1997) 4380-4382.

DOI: 10.1063/1.364830

Google Scholar

[143] S. Ram, Crystallisation of BaFe12O19 hexagonal ferrite with an aid of B2O3 and the effects on microstructure and magnetic properties useful for permanent magnets and magnetic recording devices, J. Magn. Magn. Mater. 82 (1) (1989) 129-150.

DOI: 10.1016/0304-8853(89)90073-5

Google Scholar

[144] H. Taguchi, T. Takeishi, K. Suwa, K. Masuzawa, Y. Minachi, High Energy Ferrite Magnets, J. Phys. IV 7 (1997) C1–311.

DOI: 10.1051/jp4:19971122

Google Scholar

[145] F. Haberey, F. Kools, In: Proc ICF4, Japan, 1980, p.356.

Google Scholar

[146] J-H. Seok, J-H. Kim, S-H. Cho, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1126.

Google Scholar

[147] F.J. A. Den Broeder, P. E.C. Franken, In: L. M. Levinson, editor. Grain boundary phenomena in electronic ceramics, The American Ceramic Society, Columbus, Ohio, 1981, p.494

Google Scholar

[148] I. J. Mccolm, N. J. Clark, In: High Performance Ceramics, London: Blackie, 1988.

Google Scholar

[149] K. P. Belov, L. I. Koroleva, R. Z. Levitin, Y. V. Jergin, A. V. Pedko, Die magnetokristalline anisotropie hexagonaler ferromagnetischer stoff in de nane des Curie-punktes, Phys. Status. Solidi B 12 (1965) 219-224.

DOI: 10.1002/pssb.19650120120

Google Scholar

[150] C. Heck, In: Magnetic Materials and their Applications, London: Butterworth, (1974)

Google Scholar

[151] H. B. G. Casimir, J. Smit, U. Enz, J. F. Fast, H. P. J Wijn, E. W. Gorter, Rapport sur quelques recherches dans le domaine du magnetism aux laboratories Philips, J Phys Rad. 20 (1959) 360-373.

DOI: 10.1051/jphysrad:01959002002-3036000

Google Scholar

[152] F. K. Lotgering, Magnetic anisotropy and saturation of LaFe12O19 and some related compounds, J. Phys. Chem. Solids 35 (12) (1974) 1633-1639.

DOI: 10.1016/s0022-3697(74)80176-9

Google Scholar

[153] J. C. Slovczewski, J. Appl. Phys. Lett. 32 (1961) 2535.

Google Scholar

[154] P. B. Braun, Crystal structure of a new group of ferromagnetic compounds, Philips Res. Rep. 12 (6) (1957) 491-548.

Google Scholar

[155] M. Takahashi, Induced Magnetic Anisotropy of Evaporated Films Formed in a Magnetic Field, J. Appl. Phys. 33 (3) (1962) 1101-1107.

DOI: 10.1063/1.1728618

Google Scholar

[156] L.Neel, Propertiés magnétiques des ferrites: ferrimagnétisme et antiferromagnétisme, Ann. De Phys 3 (1948) 137-198.

DOI: 10.1051/anphys/194812030137

Google Scholar

[157] P. W Anderson, Generalizations of the weiss molecular field theory of antiferromagnetism, Phys. Rev. 79 (4) (1950) 705-710.

DOI: 10.1103/physrev.79.705

Google Scholar

[158] H. Richter, H. Dietrich, On the magnetic properties of fined-milled barium and strontium ferrite. IEEE Trans. Magn. Magn. 4 (3) (1968) 263-267.

DOI: 10.1109/tmag.1968.1066284

Google Scholar

[159] R. F. Fischer, H. Kronmuller, Importance of ideal grain boundaries of high remanent composite permanent magnets, J. Appl. Phys. 83 (6) (1998) 3271-3276.

DOI: 10.1063/1.367095

Google Scholar

[160] K. J. Sixtus, K. J. Kronenberg, R. K. Tenzer, Investigations on Barium Ferrite Magnets, J. Appl. Phys. 7 (9) (1956) 1051-1058.

DOI: 10.1063/1.1722540

Google Scholar

[161] J. J. Went, G. W Rathenau, E. W. Gorter, G. W. Van Oosterhout, Ferroxdure: a class of new permanent magnets materials, Philips. Techn. Rev. 13 (1951/1952) 194-208.

Google Scholar

[162] O. Kitakami, K. Goto, T. Sakurai, A Study of the Magnetic Domains of Isolated Fine Particles of Ba Ferrite, Jpn. J. Appl. Phys. 27 (1988) 2274-2277.

DOI: 10.1143/jjap.27.2274

Google Scholar

[163] L. Rezlescu, E. Rezlescu, P. D. Popa, N. Rezlescu. Fine barium hexaferrite powder prepared by the crystallisation of glass, J. Magn. Magn. Mater. 193 (1-3) (1999) 288-290.

DOI: 10.1016/s0304-8853(98)00442-9

Google Scholar

[164] T. Hirayama, Q. Ru, T. Tanki, A. Tonomura, Observation of magnetic‐domain states of barium ferrite particles by electron holography, Appl. Phys. Lett. 63 (3) (1993) 418-421.

DOI: 10.1063/1.110011

Google Scholar

[165] J. Dho, E. K. Lee, J. Y. Park, N. H. Hur, Effects of the grain boundary on the coercivity of barium ferrites, J. Magn. Magn. Mater. 285 (1-2) (2005) 164-168.

Google Scholar

[166] D. J. Craik, E. H Hill, Coercivity mechanisms in oxide magnets, J. Phys. Colloque 38 (1977) C1–39.

DOI: 10.1051/jphyscol:1977107

Google Scholar

[167] J-H. Choy, J-B. Yoon and K-S. Han, Structural Analysis of Poor Crystalline Ferrite Precursor, γ-FeOOH, Derived from Topotactic Hydrolysis of FeOCl, J Phys IV 7 (1997) C1–335.

DOI: 10.1051/jp4:19971134

Google Scholar

[168] F. M. M. Pereira, C. A. R. Junior, M. R. P. Santos, R. S. T. M Sohn, F. N. A Freire, J. M. Sasaki, J. A. C. Paiva, A. S. B. Sombra, Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1–xFe12O19), J. Mater. Sci: Mater. Electron. 19 (2008) 627–638.

DOI: 10.1007/s10854-007-9411-5

Google Scholar

[169] V. K. S. Sankaranarayanan, D. C. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method, J. Magn. Magn. Mater. 153 (3) (1996) 337–346.

DOI: 10.1016/0304-8853(95)00537-4

Google Scholar

[170] B. J. Evans, F. Grandjean, A. P. Lilot, R. H. Vogel, A. Gerard, 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M = Sr, Ba), J. Magn. Magn. Mater. 67 (1) (1987)123–129.

DOI: 10.1016/0304-8853(87)90728-1

Google Scholar

[171] D. Dyar, A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination, Americ. Mineral. 70 (3–4) (1985) 304–316.

Google Scholar

[172] W. Roos, H. Haak, C. Voight, K. A. Hempel, Microwave absorption and static magnetic properties of coprecipitated barium ferrire, J Phys Colloque 38 (1977) C1–35.

DOI: 10.1051/jphyscol:1977106

Google Scholar

[173] H. S. Shinind, S-J. Kwon, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1402.

Google Scholar

[174] G. Mendoza-Suárez, M. C. Cisneros-Morales, M. M. Cisneros-Guerrero, K. K. Johal, H. Mancha-Molinar, O. E. Ayala-Valenzuela, Influence of stoichiometry and heat treatment conditions on the magnetic properties and phase constitution of Ba-ferrite powders prepared by sol–gel, Mater. Chem. Phys. 77 (3) (2002) 796-801.

DOI: 10.1016/s0254-0584(02)00141-4

Google Scholar

[175] C. Sudakar, G. N. Subbanna, T. R. N. Kutty, Nanoparticles of Barium Hexaferrite by Gel to Crystallite Conversion and their Magnetic Properties, J. Electroceram. 6 (2) (2001) 123-134.

Google Scholar

[176] C. Sudakar, G. N. Subbanna, T. R. N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties, J. Magn. Magn. Mater. 263 (3) (2003) 253-268.

DOI: 10.1016/s0304-8853(02)01572-x

Google Scholar

[177] C. S Wang, F. L. Wei, M. Lu, D. H. Han, Z. Yang, Structure and magnetic properties of Zn–Ti-substituted Ba-ferrite particles for magnetic recording, J. Magn. Magn. Mater. 183 (1-2) (1998) 241-246.

DOI: 10.1016/s0304-8853(97)01070-6

Google Scholar

[178] T-S. Chin, S. L. Hsu, M. C. Deng, Barium ferrite particulates prepared by a salt-melt method, J. Magn. Magn. Mater. 120 (1-3) (1993) 64-68.

DOI: 10.1016/0304-8853(93)91288-i

Google Scholar

[179] T. Kagotani, H. Takamura, M. Okada, M. Homma. In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1137.

Google Scholar

[180] M. Chiba, C. Uemura, Y. Koizumi. In: Ferrites, Proc. ICF6, Kyoto and Tokyo, 1992, p.89.

Google Scholar

[181] K. Haneda, A. H. Morrish, Mössbauer spectroscopy of magnetic small particles with emphasis on barium ferrite, Phase Trans. 24–26 (1990) 661-690.

DOI: 10.1080/01411599008210248

Google Scholar

[182] W. A. Kaczmarek, A. Calka, B. W. Ninham. Preparation of fine, hollow, spherical BaFe12O19 powders, Mater. Chem. Phys. 32 (1) (1992) 43-48.

DOI: 10.1016/0254-0584(92)90246-5

Google Scholar

[183] H. Fahlenbrach, Werkst U. Betr. 90 (1957) 735.

Google Scholar

[184] A. L. Stuijts, G. W. Rathenau, G. H. Weber, Ferroxdure I and II, anisotropic permanent magnet materials, Philips Techn. Rev. 16 (1954) 141-147.

Google Scholar

[185] A. J. Moulson, J. M. Herbert, Electroceramics: materials, properties, application. 2 ed. John Wiley & Sons Ltd., (2003) 557 p.

Google Scholar

[186] E. W. Gorter, Saturation magnetization and crystal chemistry of ferromagnetic oxides, Philips Res. Repts. 9 (1954) 403-443.

Google Scholar

[187] E. Ogawa, O. Kubo, In: Ferrites, Proc. ICF6 Tokyo and Kyoto, 1992. p.1410

Google Scholar

[188] G. Mendoza-Suárez, L. P. Rivas-Vázquez, A. F. Fuentes, J. I. Escalante-Garcia, O. E. Ayala-Valenzuela, E. Valdéz, Preparation and magnetic properties of Zn–Ti subtituted Ba-ferrite powders, Mater. Lett. 57 (4) (2002) 868-872.

DOI: 10.1016/s0167-577x(02)00887-x

Google Scholar

[189] A. H. Mones, E. Banks, Cation substitutions in BaFe12O19, J. Phys. Chem. Solids 4 (3) (1958) 217-222.

DOI: 10.1016/0022-3697(58)90119-7

Google Scholar

[190] U. N Mulay, A. P. B. Sinha, Synthesis and properties of some new ferrites of formula La3+Me2+Fe3+.11O19, Indian J. Pure. Appl. Phys. 8 (1970) 412.

Google Scholar

[191] J. C Corral-Huacuz, G. Mendoza-Suárez, Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel, J. Magn. Magn. Mater. 242–245 (2002) 430-433.

DOI: 10.1016/s0304-8853(01)01141-6

Google Scholar

[192] C. Hashimoto, T. Kimura, K. Hashimoto, H. Kimura, K. Haneda. In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1414.

Google Scholar

[193] P. Brahma, A. K. Giri, D. Chakravorty, M. Roy, D. Bahadur, Magnetic properties of As2O3- and Sb2O3-doped Ba-M hexagonal ferrites prepared by the sol-gel method, J. Magn. Magn. Mater. 117 (1-2) (1992) 163-168.

DOI: 10.1016/0304-8853(92)90306-9

Google Scholar

[194] Z. Simsa, R. Gerber, V. Lewis, V. A. M. Brabers, Perminvar-Like Behaviour in some Hexagonal Ferrites, J. Phys. IV 7 (1997) C1–197.

DOI: 10.1051/jp4:1997173

Google Scholar

[195] Y. Kaneko, S. Anamoto, A. Hamamura, J. Jpn. Inst. Powder. Powder. Metall. 34 (1987) 169.

Google Scholar

[196] L. Jahn, H. G. Muller, The coercivity of hard ferrites single crystal, Phys Status Solidi B 35 (2) (1969) 723-730.

Google Scholar

[197] B. T. Shirk, W. R. Buessm, Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19 single crystals, J Appl. Phys. 40 (3) (1969) 1294-1297.

Google Scholar

[198] A. Cochardt, Modified Strontium Ferrite, a New Permanent Magnet Material, J. Appl. Phys. 34 (4) (1963) 1273-1275.

DOI: 10.1063/1.1729468

Google Scholar

[199] W. A. Kaczmarek, B. Idzikowski, K-H. Muller, XRD and VSM study of ball-milled SrFe12O19 powder, J. Magn. Magn. Mater. 177–181 (2) (1998) 921-922.

DOI: 10.1016/s0304-8853(97)00839-1

Google Scholar

[200] C. Tanasoiu, P. Nicolau, C. Miclea, Prepartion and magnetic properties of high coercivity strontium ferrite micropowers obtainded by extend wet milling, IEEE Trans. Magn. Magn. 12 (6) (1976) 980-982.

DOI: 10.1109/tmag.1976.1059141

Google Scholar

[201] A. Ataie, I. R. Harris, C. B Ponton, Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions, J. Mater. Sci. 30 (6) (1995) 1429-1433.

DOI: 10.1007/bf00375243

Google Scholar

[202] J-H. Seok, J-J. Kim, B-K. Lee, S-H. Cho, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.180.

Google Scholar

[203] E. Wu, S. J. Campbell, W. A. Kaczmarek, A Mössbauer effect study of ball-milled strontium ferrite, J. Magn. Magn. Mater. 177–181 (1) (1998) 255-256.

DOI: 10.1016/s0304-8853(97)00910-4

Google Scholar

[204] V. V. Pankov, M. Pernet, P. Germi, P. Mollard, Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component, J. Magn. Magn. Mater. 120 (1-3) (1993) 69-72.

DOI: 10.1016/0304-8853(93)91289-j

Google Scholar

[205] A. Yazaki, D. Endo, T. Uchida, Y. Nagata, K. Ohta, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.385.

Google Scholar

[206] H. Taguchi, F. Hirata, T. Takeshi, T. Mori, In: Ferrites, Proc. ICF, Tokyo and Kyoto, 1992, p.1118.

Google Scholar

[207] N. K. Dung, D. L Minh, B. T. Cong, N. Chau, N. X. Phuc, The Influence of La2O3 Substitution on the Structure and Properties of Sr Hexaferrite, J. Phys. IV 7 (1997) C1–313.

DOI: 10.1051/jp4:19971123

Google Scholar

[208] X Liu, P. Hernández-Gómez, K. Huang, S. Zhou, Y. Wang, X. Cai, H. Sun, B. Ma, Research on La3+- Co2+-substituted strontium ferrite magnets for high intrinsic coercive force, J. Magn. Magn. Mater. 305 (2) (2006) 524-528.

DOI: 10.1016/j.jmmm.2006.02.096

Google Scholar

[209] H. Ismael, M. K. El Nimr, A. M. Abou El Ata, M. A. El Hiti, M. A. Ahmed, A. A. Murakhowskii, Dielectric behavior of hexaferrites BaCo2−xZnxFe16O27, J. Magn. Magn. Mater. 150 (3) (1995) 403–408

DOI: 10.1016/0304-8853(95)00278-2

Google Scholar

[210] Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Preparation and microwave properties of Co- and Ti-doped barium ferrite by citrate sol–gel process, Mater. Chem. Phys. 80 (1) (2003), 129–134.

DOI: 10.1016/s0254-0584(02)00457-1

Google Scholar

[211] Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Complex permittivity, permeability, and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol–gel process, Mater. Sci. Eng. B 96 (2002), 289–295

DOI: 10.1016/s0921-5107(02)00381-1

Google Scholar

[212] J. C. Maxwell, Electricity and Magnetism, Vol. 1, Oxford University Press, New York, 1973, p.828

Google Scholar

[213] C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies, Phys. Rev. 83 (1) (1951) 121–124.

DOI: 10.1103/physrev.83.121

Google Scholar

[214] S. E. Jacobo, W. G. Fano, A. C. Razzite, N. D. Digiovanni, V. Trainotti, Dielectric properties of barium hexaferrite in the microwave range. In: Conference on Electrical Insulation and Dielectric Phenomena, Annual Report. Publication Date: 25–28 October, Vol. 1, 1998, p.273–276

DOI: 10.1109/ceidp.1998.733967

Google Scholar

[215] P. V. Reddy, T. S. Rao, Dielectric behaviour of mixed Li-Ni ferrites at low frequencies, J. Less. Com. Metals 86 (1982) 255–261.

DOI: 10.1016/0022-5088(82)90211-9

Google Scholar

[216] B. K. Kuanr, G. P. Srivastava. Dispersion observed in electrical properties of titanium‐substituted lithium ferrites, J. Appl. Phys. 75 (10) (1994) 6115–6117.

DOI: 10.1063/1.355478

Google Scholar

[217] M. A. El Hiti, Dielectric behaviour in Mg–Zn ferrites, J. Magn. Magn. Mater. 192 (2) (1999) 305–313

DOI: 10.1016/s0304-8853(98)00356-4

Google Scholar

[218] F. M. M. Pereira, M. R. P. Santos, R. S. T. M. Sohn, J. S. Almeida, A. M. L. Medeiros, M. M. Costa, A. S. B. Sombra. Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1-xFe12O19) in the RF and microwave (MW) frequency range, J. Mater Sci: Mater. Electron. 20 (2009) 408–417.

DOI: 10.1007/s10854-008-9744-8

Google Scholar

[219] A. Bahadoor, Y. M. N. Afsar, Complex permittivity and permeability of barium and strontium ferrite powders in X, KU, and K-band frequency ranges, J. Appl. Phys. 97 (2005) 10F105–10F105-3.

DOI: 10.1063/1.1853633

Google Scholar

[220] G. Kumar, K. P. Ray, Broadband microstrip antennas, Artech House, Norwood, MA. 2003.

Google Scholar

[221] R. Garg, P. Bhartia, I. Bahl, A. Ittipiboon, Microstrip antenna design handbook, Artech House, Norwood, MA. 2001.

Google Scholar

[222] D. M. Pozar, Microstrip antenna aperture-coupled to a microstripline, Electron. Lett. 21 (2) (1985), 49–50.

DOI: 10.1049/el:19850034

Google Scholar

[223] M. Ali, R. Dougal, G. Yang, and H. S. Hwang, Wideband circularly polarized microstrip patch antenna for wireless LAN applications, IEEE Antennas Propag Int Symp Digest 2, Columbus, OH (2003) 34–37.

DOI: 10.1002/mop.20796

Google Scholar

[224] M. W. McAllister, S .A. Long, G. L. Conway, Rectangular dielectric resonator antenna, IEEE Electron. Lett. 19 (6) (1983) 218–219.

DOI: 10.1049/el:19830150

Google Scholar

[225] S. Long, M. McAllister, L. Shen, The resonant cylindrical dielectric cavity antenna, IEEE Trans. Antennas Propag. 31 (3) (1983), 406–412.

DOI: 10.1109/tap.1983.1143080

Google Scholar

[226] M. W. Mcallister, S. A. Long, Resonant hemispherical dielectric antenna, IEEE Electron. Lett. 20 (16) (1984) 657–659.

DOI: 10.1049/el:19840450

Google Scholar

[227] A. Petosa, A. Ittipiboon, Y. Antar, Broadband dielectric resonator antennas, In: Dielectric resonator antennas, Research Studies Press Ltd., Hertfordshire, England, UK, 2003, p.177–208.

DOI: 10.1109/aps.2004.1329868

Google Scholar

[228] A. Petosa, Dielectric resonator antenna Handbook, Norwood: Artech House, 2007.

Google Scholar

[229] A. Petosa, R. K. Mongia, M. Cuhaci, J. S. Wight, Magnetically tunable ferrite resonator antenna, IEEE Electron. Lett. 30 (13) (1994) 1021-1022

DOI: 10.1049/el:19940698

Google Scholar

[230] A. Petosa, D. J. Roscoe, A. Ittipibooii, M. Cuhaci, Antenna research at the Communications Research Centre, IEEE Antennas Propag. Mag. 38 (5) (1996) 7-18.

DOI: 10.1109/74.544397

Google Scholar

[231] B. W. Hakki, P. D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, I. R. E. Trans. Microwave Theory Tech. 8 (4) (1960) 402–410.

DOI: 10.1109/tmtt.1960.1124749

Google Scholar

[232] W. E. Courtney, Analysis and evaluation of a method of measuring th complex permittivity and permeability of microwave insulators, IEEE Trans. Microwave Theory Tech. MTT-18 (1970) 476–485.

DOI: 10.1109/tmtt.1970.1127271

Google Scholar

[233] A. A. Kishk, X. Zhang, A. W. Glisson, D. Kajfez, Numerical analysis of stacked dielectric resonator antennas excited by coaxial probe of wide band applications, IEEE Trans Antennas Propag. 51 (8) (2003), 1996–2006.

DOI: 10.1109/tap.2003.814735

Google Scholar

[234] G. P. Junker, A. A. Kishk, X. Zhang, A. W. Glisson, D. Kajfez, Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode, IEEE Electron. Lett. 30 (2) (1994), 97-98.

DOI: 10.1049/el:19940114

Google Scholar

[235] G. P. Junker, A. A. Kishk, X. Zhang, A. W. Glisson, D. Kajfez, Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna, IEEE Electron. Lett. 30 (3) (1994), 177-178.

DOI: 10.1049/el:19940191

Google Scholar

[236] K. M. Luk, K. W. Leung, Dielectric resonator antennas, Research Studies Press Ltd. Hertfordshire, England, UK, 2003.

Google Scholar

[237] Q. Mohsen, Factors affecting the synthesis and formation of single-phase barium hexaferrite by a technique of oxalate precursor. Am J. Appl. Sci. 7 (7) (2010) 914-921.

DOI: 10.3844/ajassp.2010.914.921

Google Scholar

[238] R. Gerber, R. Atkinson, Z. Simsa, Magnetism and magneto-optics of hexaferrite layers, J. Magn. Magn. Mater. 175 (1-2) (1997) 79-89.

DOI: 10.1016/s0304-8853(97)00151-0

Google Scholar

[239] C-W. Nan, M. I. Burchurin, S. Dong, D. Viehland, G. Srinvasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J Appl Phys. 103 (2008) 031101.

DOI: 10.1063/1.2836410

Google Scholar

[240] G. Srinivasan, Magnetoelectric Composites, Ann. Rev. Mater. Res. 40 (2010) 153-178.

Google Scholar

[241] I. Lee, Y. Obukhov, G. Xiang, A. Hauser, F. Yang, P. Banerjee, D. V. Pelekhov,P. C. Hammel, Nanoscale scanning probe ferromagnetic resonance imaging using localized modes, Nature 466 (2010) 845-848.

DOI: 10.1038/nature09279

Google Scholar