Thermodynamic Modeling of Phase Equilibria in the FeO-MgO-Al2O3 System

Article Preview

Abstract:

Thermodynamic modeling of coordinates of phase diagrams’ liquidus lines of the FeO–MgO, FeO–Al2O3, MgO–Al2O3 systems and coordinates of phase diagram’s liquidus surface of the FeO–MgO–Al2O3 system has been carried out. In the course of work, a thermodynamic model which describes activity of oxide melt had been selected for each of the systems; energy parameters of the model have been determined. Regions of thermodynamic stability of solid phases which are at equilibrium with the oxide melt have been determined. Results of the modeling have been compared with experimental data existing in the literature. Modeling technique has also allowed evaluating enthalpies and entropies of FeAl2O4 and MgAl2O4 compounds’ formation out of components of the oxide melt. The obtained results are of interest for steelmaking industry processes when determining the melt temperature of a slag containing oxides of iron, magnesium and aluminum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] L. Cao, Ch. Liu, Q. Zhao, M. Jiang, Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag, J. Iron Steel Res., Int. 24 (2017) 258-265.

DOI: 10.1016/s1006-706x(17)30038-9

Google Scholar

[2] H.-Ch. Chuang, W.-S. Hwang, Sh.-H. Liu, Effects of basicity and FeO content on the softening and melting temperatures of the CaO–SiO2–MgO–Al2O3 slag system, Mater. Trans. 50 (2009) 1448-1456.

DOI: 10.2320/matertrans.mra2008372

Google Scholar

[3] R.A.M. Almeida, D. Vieira, W.V. Bielefeldt, A.C.F. Vilela, MgO saturation analisys of CaO–SiO2–FeO–MgO–Al2O3 slag system, Mater. Res. 21 (2018) e20170041.

DOI: 10.1590/1980-5373-mr-2017-0041

Google Scholar

[4] M.A. Tayeb, A.N. Assis, S. Sridhar, R.J. Fruehan, MgO solubility in steelmaking slags, Metall. Mater. Trans. B. 46 (2015) 1112-1114.

DOI: 10.1007/s11663-015-0352-8

Google Scholar

[5] J. Li, A. Xu, D. He, Q. Yang, N. Tian, Effect of FeO on the formation of spinel phases and chromium distribution in the CaO–SiO2–MgO–Al2O3–Cr2O3 system, Int. J. Miner. Metall. Mater. 20 (2013) 253-258.

DOI: 10.1007/s12613-013-0720-9

Google Scholar

[6] F. Engström, D. Adolfsson, C. Samuelsson, Å. Sandström, B. Björkman, A study of the solubility of pure slag minerals, Miner. Eng. 41 (2013) 46-52.

DOI: 10.1016/j.mineng.2012.10.004

Google Scholar

[7] P. Yan, B.A. Webler, P.C. Pistorius, R.J. Fruehan, Nature of MgO and Al2O3 dissolution in metallurgical slags, Metall. Mater. Trans. B. 46 (2015) 2414-2418.

DOI: 10.1007/s11663-015-0440-9

Google Scholar

[8] J.H. Park, D.S. Kim, Effect of CaO–Al2O3–MgO slags on the formation of MgO–Al2O3 inclusions in ferritic stainless steel, Metall. Mater. Trans. B. 36 (2005) 495-502.

DOI: 10.1007/s11663-005-0041-0

Google Scholar

[9] G.G. Mikhailov, B.I. Leonovich, Yu.S. Kuznetsov, Thermodynamics of Metallurgical Processes and Systems, Moscow Institute of Steel and Alloys Publishing house, Moscow, (2009).

Google Scholar

[10] O.V. Samoilova, L.A. Makrovets, G.G. Mikhailov, E.A. Trofimov, Thermodynamic analysis of the Cu–Si–Ni–O system, Russ. J. Non-ferrous Metals. 53 (2012) 223-228.

DOI: 10.3103/s1067821212030182

Google Scholar

[11] O.V. Samoilova, L.A. Makrovets, E.A. Trofimov, Thermodynamic simulation of the phase diagram of the Cu2O–Na2O–K2O system, Moscow Univ. Chem. Bull. 73 (2018) 105-110.

DOI: 10.3103/s0027131418030057

Google Scholar

[12] O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, Pergamon Press Ltd Publ., Oxford, (1979).

Google Scholar

[13] L.S. Darken, R.W. Gurry, The system iron–oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases, J. Am. Chem. Soc. 68 (1946) 798-816.

DOI: 10.1021/ja01209a030

Google Scholar

[14] H. Schenck, W. Pfaff, Das system eisen(II)–oxyd–magnesiumoxyd und seine verteilungsgleichgewichte mit flüssigem eisen bei 1520 bis 1750 °C, Arch. Eisenhüttenwes. 32 (1961) 741-751.

DOI: 10.1002/srin.196103268

Google Scholar

[15] R. Scheel, Gleichgewichte im system CaO–MgO–FeOn bei gegenwart von metallischem eisen, Sprechsaal für Keramik, Glas, Baustoffe, 108 (1975) 685-686.

Google Scholar

[16] W.A. Fischer, A. Hoffmann, Das zustandsschaubild eisenoxydul–aluminiumoxyd, Arch. Eisenhüttenwes. 27 (1956) 343-346.

DOI: 10.1002/srin.195601412

Google Scholar

[17] K. Rosenbach, J.A. Schmitz, Untersuchungen im dreistoffsystem eisen (II)-oxid–chrom (III)-oxid–tonerde, Arch. Eisenhüttenwes. 45 (1974) 843-847.

DOI: 10.1002/srin.197403968

Google Scholar

[18] I.A. Novokhatskiy, B.F. Belov, A.V. Gorokh, A.A. Savinskaya, To the phase equilibrium diagram of the FeO–Al2O3 system, J. Phys. Chem. 39 (1965) 2806-2808.

Google Scholar

[19] A.M. Alper, R.N. McNally, P.H. Ribbe, R.C. Doman, The system MgO–MgAl2O4, J. Am. Ceram. Soc. 45 (1962) 263-268.

DOI: 10.1111/j.1151-2916.1962.tb11141.x

Google Scholar

[20] D. Viechnicki, F. Schmid, J.W. McCauley, Liquidus-solidus determinations in the system MgAl2O4–Al2O3, J. Am. Ceram. Soc. 57 (1974) 47-48.

DOI: 10.1111/j.1151-2916.1974.tb11367.x

Google Scholar

[21] A. Ono, Fe–Mg partitioning between spinel and olivine, J. Japan Assoc. Min. Petr. Econ. Geol. 78 (1983) 115-122.

DOI: 10.2465/ganko1941.78.115

Google Scholar