TIG Arc Welding - Brazing of Dissimilar Metals - An Overview

Article Preview

Abstract:

Tungsten inert gas (TIG) arc welding–brazing has been recently developed and is being increasingly implemented in various industrial applications. Nowadays, this process gains much attention in joining of dissimilar metal combinations. This review paper explains the principles underlying TIG arc welding – brazing of dissimilar metal combinations and highlights the above benefits in a number of practical applications. The process mechanism of TIG brazing is different from the conventional welding processes and it will bridge the gap between the two substrates by the addition of fillers under the concentrated heat source of TIG electrode. TIG brazing technique is one of the best alternative process among the other joining process for effective joining of dissimilar metals, which have various melting temperatures and physical properties. It is very important to understand the process mechanism and its compatibility with the various dissimilar materials joining. The present study focuses on the addressing of progress of TIG brazing process in modern days and its applications in the various industries, and to bring the awareness to the manufacturers about the importance of this process from this review report. Keywords: Tungsten inert gas (TIG) arc welding–brazing, Dissimilar metals, Microstructures, Mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

768-774

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] H.T. Zhang, J.H. Liu, J.C. Feng, Effect of auxiliary TIG arc on formation and microstructures of aluminum alloy/stainless steel joints made by MIG welding-brazing process, Trans. Nonferrous. Met. Soc. China.24 (2014) 2831-2838.

DOI: 10.1016/s1003-6326(14)63415-4

Google Scholar

[2] M.M. Cheepu, V. Muthupandi, S. Loganathan, Friction welding of titanium to 304 stainless steel with electroplated nickel interlayer, Mater. Sci. Forum. 710 (2012) 620-625.

DOI: 10.4028/www.scientific.net/msf.710.620

Google Scholar

[3] D. Venkateswarlu, M. Cheepu, M.M. Mahapatra, Analysing the friction stir welded joints of AA2219 Al-Cu alloy in different heat-treated-state. IOP Conf. Ser. Mater. Sci. Eng. 330 (1) (2018) 012074.

DOI: 10.1088/1757-899x/330/1/012074

Google Scholar

[4] H.W. Liu, C. Guo, Y. Cheng, X.F. Liu, G.J. Shao, Interfacial strength and structure of stainless steel–semi-solid aluminum alloy clad metal, Mater. Lett.60 (2006) 180-184.

DOI: 10.1016/j.matlet.2005.08.015

Google Scholar

[5] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Properties of friction welding titanium-stainless steel joints with a nickel interlayer, Procedia. Mater. Sci. 5 (2014) 1120-1129.

DOI: 10.1016/j.mspro.2014.07.406

Google Scholar

[6] M. Cheepu, M. Ashfaq, V. Muthupandi, A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel, Trans. Indian. Inst. Met. 70(2017) 2591-2600.

DOI: 10.1007/s12666-017-1114-x

Google Scholar

[7] G. Pardal, S. Ganguly, S. Williams, J. Vaja, Dissimilar metal joining of stainless steel and titanium using copper as transition metal, Int. J. Adv. Manuf. Technol. 86 (2016) 1139-1150.

DOI: 10.1007/s00170-015-8110-2

Google Scholar

[8] M. Cheepu, V. Muthupandi, B. Srinivas, K. Sivaprasad, Development of a friction welded bimetallic joints between titanium and 304 austenitic stainless steel, in: P.M. Pawar, B.P. Ronge, R. Balasubramaniam, S. Seshabhattar (Eds.), Techno-Societal 2016, International Conference onAdvanced Technologies for Societal Applications, ICATSA 2016, Springer, Cham, 2018, pp.709-717. DOI: https://doi.org/10.1007/978-3-319-53556-2_73.

DOI: 10.1007/978-3-319-53556-2_73

Google Scholar

[9] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding, Procedia. Mater. Sci. 5 (2014) 1107-1113.

DOI: 10.1016/j.mspro.2014.07.404

Google Scholar

[10] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Joining of AISI 1040 steel to 6082-T6 aluminium alloy by friction welding, J. Adv. Mech. Eng. Sci. 1 (2015) 57-64.

DOI: 10.18831/james.in/2015011006

Google Scholar

[11] M. Cheepu,S. Haribabu,T. Ramachandraiah,B. Srinivas,D. Venkateswarulu,S. Karna,S. Alapati W.S. Che, Fabrication and analysis of accumulative roll bonding process between magnesium and aluminum multi-layers, Appl. Mech. Mater. 877(2018) 183-189.

DOI: 10.4028/www.scientific.net/amm.877.183

Google Scholar

[12] M.Cheepu, V.Muthupandi, D.Venkateswarlu, B.Srinivas, WS.Che (2018) Interfacial microstructures and characterization of the titanium—stainless steel friction welds using interlayer technique. In: Parinov I., Chang SH., Gupta V. (eds) Advanced Materials. PHENMA 2017. Springer Proceedings in Physics, Vol 207, (2019), 267-283. Springer, Cham. https://doi.org/10.1007/978-3-319-78919-4_21.

DOI: 10.1007/978-3-319-78919-4_21

Google Scholar

[13] E. Taban, J.E. Gould, J.C. Lippold, Characterization of 6061-T6 Al to AISI 1018 steel interfaces during joining and thermo-mechanical conditioning, Mater. Sci. Eng. A. 527(2010) 1704-1708.

DOI: 10.1016/j.msea.2009.10.059

Google Scholar

[14] C.H. Muralimohan M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metall. Mater. Trans. A. 47 (2016) 347-359.

DOI: 10.1007/s11661-015-3210-z

Google Scholar

[15] C.H. MuralimohanV. Muthupandi,K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, Inter. J. Mater. Res. 105 (2014) 350-357.

DOI: 10.3139/146.111031

Google Scholar

[16] S. Karna, M. Cheepu, D. Venkateswarulu, V. Srikanth, Recent developments and research progress on friction stir welding of titanium alloys: an overview. IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012068.

DOI: 10.1088/1757-899x/330/1/012068

Google Scholar

[17] M. Cheepu, V. Muthupandi W.S. Che, Improving mechanical properties of dissimilar material friction welds, Appl. Mech. Mater. 877 (2018) 157-162.

DOI: 10.4028/www.scientific.net/amm.877.157

Google Scholar

[18] C.H. Muralimohan, V. Muthupandi, Friction welding of type 304 stainless steel to CP titanium using nickel interlayer, Adv. Mater. Res. 794 (2013) 351-357.

DOI: 10.4028/www.scientific.net/amr.794.351

Google Scholar

[19] D. Krishnaja, M. Cheepu, D. Venkateswarlu, A review of research progress on dissimilar laser weld-brazing of automotive applications, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012073.

DOI: 10.1088/1757-899x/330/1/012073

Google Scholar

[20] X. Zhan, Y. Li, W.Ou, F. Yu, J. Chen, Y. Wei, Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy,Opt. Laser. Technol. 85 (2016) 75-84.

DOI: 10.1016/j.optlastec.2016.06.001

Google Scholar

[21] J. Matsuda A. Utsumi, Tig or mig arc augmented laser welding of thick mild steel plate, Joi.& Mater. 1 (1988) 31.

Google Scholar

[22] J.H. Jun, J.H. Park, M. Cheepu, S.M. Cho, Observation and analysis of metal transfer phenomena for high-current super-TIG welding process, Sci. Technol. Weld. Joi. (2019).

DOI: 10.1080/13621718.2019.1637172

Google Scholar

[23] J.L. Song, S.B. Lin, C.L. Yang, C.L. Fan, Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint, J. Alloy. Compd. 488 (2009) 217-222.

DOI: 10.1016/j.jallcom.2009.08.084

Google Scholar

[24] M. Cheepu, B. Srinivas, N. Abhishek, T. Ramachandraiah, S. Karna, D. Venkateswarlu, S. Alapati, W.S. Che, Dissimilar joining of stainless steel and 5083 aluminum alloy sheets by gas tungsten arc welding-brazing process, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012048.

DOI: 10.1088/1757-899x/330/1/012048

Google Scholar

[25] K. Devireddy, V. Devuri, M. Cheepu, B.K. Kumar, Analysis of the influence of friction stir processing on gas tungsten arc welding of 2024 aluminum alloy weld zone, Int. J. Mech. Prod. Eng. Res. Dev. 8(1) (2018) 243-252.

DOI: 10.24247/ijmperdfeb201828

Google Scholar

[26] M. Roulin, J.W. Luster, G. Karadenz, A. Mortensen, Strength and structure of furnace brazed joints between aluminum and stainless steel, Weld. J. 78 (1999) 151-155.

Google Scholar

[27] J.L. Song, S.B. Lin, C.L. Yang, G.C. Ma, H. Liu. Spreading behavior and microstructure characteristics of dissimilar metals TIG welding–brazing of aluminum alloy to stainless steel. Materials Science and Engineering A 509 (2009) 31–40.

DOI: 10.1016/j.msea.2009.02.036

Google Scholar

[28] Huan He, Sanbao Lin, Chunli Yang, Chenglei Fan, and Zhe Chen. Combination effects of nocolok flux with Ni powder on properties and microstructures of aluminum-stainless Steel TIG welding-brazing joint. J. Mater. Eng. Perform. 22 (2013) 3315-3323.

DOI: 10.1007/s11665-013-0615-y

Google Scholar

[29] S.B. Lin, J.L. Song, M.A. Guang-chao, C.L. Yang. Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel. Front. Mater. Sci. China 3(1) (2009) 78–83.

DOI: 10.1007/s11706-009-0007-2

Google Scholar

[30] S.X. Lv, X.J. Jing, Y. X. Huang, Y.Q. Xu, C.Q. Zheng, S.Q. Yang, Investigation on TIG arc welding–brazing of Ti/Al dissimilar alloys with Al based fillers, Sci. Technol. Weld. Join. 17(7) (2012) 519-524.

DOI: 10.1179/1362171812y.0000000041

Google Scholar

[31] S.Lv, Q. Cui, Y. Huang, X. Jing, Influence of Zr addition on TIG welding -brazing of Ti–6Al–4V to Al5A06. Mater. Sci. Eng. A 568 (2013) 150–154.

DOI: 10.1016/j.msea.2013.01.047

Google Scholar

[32] M. Cheepu and W. S. Che, Effect of burn-off length on the properties of friction welded dissimilar steel bars, J. Weld. Join. 37(1) (2019) 46-55.

DOI: 10.5781/jwj.2019.37.1.6

Google Scholar

[33] M. Cheepu and W. S. Che, Characterization of microstructure and interface reactions in friction welded bimetallic joints of titanium to 304 stainless steel using nickel interlayer, Trans. Indian. Inst. Met. 72(6) (2019) 1597-1601.

DOI: 10.1007/s12666-019-01612-4

Google Scholar

[34] M. Cheepu, D. Venkateswarlu, M.M. Mahapatra, W.S. Che, Influence of heat treatment conditions of Al-Cu aluminum alloy on mechanical properties of the friction stir welded joints. Korean Welding and Joining Society, 11 (2017) 264-264. http://www.dbpia.co.kr/Journal/ArticleDetail.NODE07278590.

Google Scholar

[35] S. Haribabu, M. Cheepu, L.Tammineni, N. K.Gurasala, V.Devuri, and V. C.Kantumuchu, Dissimilar friction welding of AISI 304 austenitic stainless steel and AISI D3 tool steel: Mechanical properties and microstructural characterization, In Advances in Materials and Metallurgy, pp.271-281. Springer, Singapore, (2019). https://doi.org/10.1007/978-981-13-1780-4_27.

DOI: 10.1007/978-981-13-1780-4_27

Google Scholar

[36] B. Srinivas, N. Murali Krishna, Muralimohan Cheepu, K. Sivaprasad, V. Muthupandi, Studies on post weld heat treatment of dissimilar aluminum alloys by laser beam welding technique, IOP Conf. Ser.: Mater. Sci. Eng. 330 (2018) 012079.

DOI: 10.1088/1757-899x/330/1/012079

Google Scholar

[37] B. Srinivas, Muralimohan. Cheepu, K. Sivaprasad, V. Muthupandi, Effect of gaussian beam on microstructural and mechanical properties of dissimilar laser welding ofAA5083 and AA6061 alloys, IOP Conf. Ser.: Mater. Sci. Eng. 330 (2018) 012066.

DOI: 10.1088/1757-899x/330/1/012066

Google Scholar

[38] M. Cheepu and W. S. Che, Friction welding of titanium to stainless steel using Al interlayer, Trans. Indian. Inst. Met. 72(6) (2019) 1563-1568.

DOI: 10.1007/s12666-019-01655-7

Google Scholar

[39] M. Cheepu, V. Muthupandi, W.S. Che, Interface microstructural characterization of titanium to stainless steel dissimilar friction welds. In: The Minerals, Metals & Materials Series (eds) TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham, (2019), 256-268.https://doi.org/10.1007/978-3-030-05861-6_23.

DOI: 10.1007/978-3-030-05861-6_23

Google Scholar

[40] Md.R.U. Ahsan, M. Cheepu, R.Ashiri,T.-H. Kim, C. Jeong, Y.-D. Park, Mechanisms of weld pool flow and slag formation location in cold metal transfer (CMT) gas metal arc welding (GMAW). Weld. World. 61(6), (2017), 1275-1285.

DOI: 10.1007/s40194-017-0489-y

Google Scholar

[41] A. Shiva, M. Cheepu, V.C. Kantumuchu, K.R. Kumar, D. Venkateswarlu, B. Srinivas, S. Jerome. Microstructure characterization of Al-TiC surface composite fabricated by friction stir processing. IOP Conf. Ser. Mater. Sci. Eng. 330 (1), (2018) 012060.

DOI: 10.1088/1757-899x/330/1/012060

Google Scholar

[42] A. Dhananjayulu, V. Devuri, M. Cheepu, D. K. Dwivedi, Tensile properties of friction stir welded joints of AA 2024-T6 alloy at different welding speeds. IOP Conf. Ser. Mater. Sci. Eng. 330 (1), (2018) 012081.

DOI: 10.1088/1757-899x/330/1/012081

Google Scholar

[43] S.P. Murugan, M. Cheepu, D.-G. Nam, Y.-D. Park, Weldability and fracture behaviour of low carbon steel/aluminium/stainless steel clad sheet with resistance spot welding,Trans. Indian. Inst. Met. 70(3) (2019) 759-768.

DOI: 10.1007/s12666-017-1081-2

Google Scholar

[44] S.V. Kumar, M. Cheepu, D. Venkateswarlu, P. Asohan, V.S. Kumar, Modelling of end milling of AA6061-TiCp metal matrix composite, IOP Conf. Ser.: Mater. Sci. Eng. 330, (2018) 012063.

DOI: 10.1088/1757-899x/330/1/012063

Google Scholar

[45] B.Srinivas, G.P. Kumar, M. Cheepu, N.Jagadeesh, S.Haribabu, Performance evaluation of titanium nitride coated tool in turning of mild steel, IOP Conf. Ser.: Mater. Sci. Eng.330 (1), 012078.

DOI: 10.1088/1757-899x/330/1/012078

Google Scholar

[46] S.P. Murugan, M.Cheepu, V.Vijayan,C. Ji, Y.-D. Park,The resistance spot weldability of a stainless seel/aluminium/low carbon steel 3-ply clad sheet. J. Weld. Join. 36(1) (2017), 25–33.

DOI: 10.5781/jwj.2018.36.1.3

Google Scholar