Bi Doping Effect on the Conductivity of Lanthanum Silicate Apatite

Article Preview

Abstract:

Lanthanum silicate apatite with various concentration of Bi-doped of La10-xBixSi6O27 were successfully synthesized by hydrothermal method in order to study effect of Bi-doped tp its structure and conductivity properties. It is found that main peaks of lanthanum silicate apatite were observed with amount of impurities. The value of conductivity at 500°C determining from AC impedance measurement was in the range between 1.99 × 10-6 S/cm and 2.03 × 10-6 S/cm. The highest conductivity was observed in the sample with x = 0.5, 1.0 and 1.5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-455

Citation:

Online since:

August 2019

Export:

Price:

[1] E. Kendrick, M. S. Islam, and P. R. Slater, Investigation of the structural changes on Zn doping in the apatite-type oxide ion conductor La9.33Si6O26: A combined neutron diffraction and atomistic simulation study, Solid State Ionics. 177 (2007) 3411–3416.

DOI: 10.1016/j.ssi.2006.10.013

Google Scholar

[2] J. E. H. Sansom and P. R. Slater, Oxide ion conductivity in the mixed Si/Ge apatite-type phases La9.33Si6-xGexO26, Solid State Ionics. 167 (2004) 23–27.

DOI: 10.1016/j.ssi.2003.12.015

Google Scholar

[3] J. E. H. Sansom, J. R. Tolchard, M. S. Islam, D. Apperley, and P. Slater, Solid state 29Si NMR studies of apatite-type oxide ion conductors, J. Mater., 16 (2006) 1410–1413.

DOI: 10.1039/b600122j

Google Scholar

[4] J. E. H. Sansom, E. Kendrick, J. R. Tolchard, M. S. Islam, and P. R. Slater, A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates, J. Solid State Electrochem. 10 (2006) 562-568.

DOI: 10.1007/s10008-006-0129-8

Google Scholar

[5] A. R. Noviyanti et al., Synthesis and conductivities of the Ti-doped apatite-type phases La9.33Si6-xTixO26, J. Phys. Conf. Ser, 1080 (2018) 1–7.

Google Scholar

[6] D.Y. Kim and S.G. Lee, Fabrication and electrical properties of Si-based La10−xBix(SiO4)6O3 apatite ionic conductor, Mater. Res. Bull. 47 (2012) 2856–2858.

DOI: 10.1016/j.materresbull.2012.04.056

Google Scholar

[7] J.R. Tolchard, J. E. H. Sansom, P. R. Slater, and M. S. Islam, Effect of Ba and Bi doping on the synthesis and sintering of Ge-based apatite phases, J. Solid State Electrochem. 8 (2004) 668–673.

DOI: 10.1007/s10008-003-0492-7

Google Scholar

[8] D. Kioupis, M. Argyridou, A. Gaki, and G. Kakali, Wet chemical synthesis of La9.83−xSrxSi6O26+δ (0≤x≤0.50) powders, characterization of intermediate and final products, J. Rare Earths. 33 (2015) 320–326.

DOI: 10.1016/s1002-0721(14)60420-8

Google Scholar

[9] A. R. Noviyanti, B. Prijamboedi, I. . Marsih, and Ismunandar, Hydrothermal Preparation of Apatite-Type Phases La9.33Si6O26 and La9M1Si6O26.5 (M= Ca, Sr, Ba), ITB J. Sci., 44 (2012)193–203.

DOI: 10.5614/itbj.sci.2012.44.2.8

Google Scholar

[10] A. R. Noviyanti, D. R. Eddy, and A. Anshari, Synthesis of the Bi-doped apatite-type phases La10-xBixSi6O27 (x= 0.5, and 1) by hydrothermal method, Procedia Chem., 17 (2015) 16 – 20.

DOI: 10.1016/j.proche.2015.12.111

Google Scholar

[11] D. G. Hui, S. R., Roller, J., S.Yick, X.Zhang, C.Dec`es-Petit, Y.Xie, R.Maric, A brief review of the ionic conductivity enhancement for selected oxide electrolytes, J. Power Sources. 172, (2007) 493–502.

DOI: 10.1016/j.jpowsour.2007.07.071

Google Scholar