Predicting Surface Hardness of Commercially Pure Titanium under Ion Implantation Process

Article Preview

Abstract:

One of the surface treatments to improve the hardness of the surface is by ion implantation process. This paper presents an equation to predict the surface hardness with the variable of the process time in ion implantation surface treatment. The hardness of three surfaces data were collected experimentally from various process times, i.e. 140 minutes, 280 minutes and 560 minutes. Lagrange polynomial interpolation was then used to generate quadratic mathematical formula of the surface hardness based on experimental data. The verification results show that the proposed equation accurately predict the surface hardness of commercially pure (cp) titanium under ion implantation process with the error less than 0.5 %. This equation can be used to set the appropriate treatment process time to achieve the expected surface hardness without costly trial experimental settings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-106

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] Z.Y. Li, Z.B. Cai, Y.P. Wu, M.H. Zhu, Effect of nitrogen ion implantation dose on torsional fretting wear behavior of titanium and its alloy, Trans. Nonferrous Met. Soc. China 27(2) (2017) 324-335.

DOI: 10.1016/s1003-6326(17)60037-2

Google Scholar

[2] H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear 238 (2) (2000) 131-137.

DOI: 10.1016/s0043-1648(99)00359-2

Google Scholar

[3] A.S. Darmawan, W.A. Siswanto, T. Sujitno, Comparison of commercially pure titanium surface hardness improvement by plasma nitrocarburizing and ion implantation, Advanced Materials Research 789 (2013) 347-351.

DOI: 10.4028/www.scientific.net/amr.789.347

Google Scholar

[4] F. Torregrosa, L. Barrallier, L. Roux, Phase analysis, microhardness and tribological behaviour of Ti-6A1-4V after ion implantation of nitrogen in connection with its application for hip-joint prosthesis, Thin Solid Films 266 (1995) 245-353.

DOI: 10.1016/0040-6090(96)80028-9

Google Scholar

[5] J. Jagielski, A. Piatkowska, P. Aubert, L. Thomé, A. Turos, A. A. Kader, Ion implantation for surface modification of biomaterials, Surf. Coat. Technol. 200(22-23) (2006) 6355-6361.

DOI: 10.1016/j.surfcoat.2005.11.005

Google Scholar

[6] A. Shypylenko, A.V. Pshyk, B. Grześkowiak, K. Medjanik, B. Peplinska, K. Oyoshi, A. Pogrebnjak, S. Jurga, E. Coy, Effect of ion implantation on the physical and mechanical properties of Ti-Si-N multifunctional coatings for biomedical applications, Materials and Design 110 (2016) 821-829.

DOI: 10.1016/j.matdes.2016.08.050

Google Scholar

[7] C. Diaz, J. Lutz, S. Mandl, J.A. Garcia, R. Martinez, R.J. Rodriguez, Improved bio-tribology of biomedical alloys by ion implantation techniques, Nucl. Instrum. Methods Phys. Res., Sect. B 267(8–9) (2009) 1630-1633.

Google Scholar

[8] D. Ikeda, M. Ogawa, Y. Hara, Y. Nishimura, O. Odusanya, K. Azuma, S. Matsuda, M. Yatsuzuka, A. Murakami, Effect of nitrogen plasma-based ion implantation on joint prosthetic material, Surf. Coat. Technol. 156(1-3) (2002) 301-305.

DOI: 10.1016/s0257-8972(02)00094-4

Google Scholar

[9] T.R. Rautray, R. Narayanan, K.H. Kim, Ion implantation of titanium based biomaterials, Prog. Mater Sci. 56(8) (2011) 1137-1177.

DOI: 10.1016/j.pmatsci.2011.03.002

Google Scholar

[10] F. Meng, Z. Li, X. Liu, Synthesis of tantalum thin films on titanium by plasma immersion ion implantation and deposition, Surf. Coat. Technol. 229 (2013) 205-209.

DOI: 10.1016/j.surfcoat.2012.04.044

Google Scholar

[11] A.S. Darmawan, W.A. Siswanto, T. Sujitno, Surface modification of commercially pure titanium by plasma nitrocarburizing at different temperatures and duration process, Research Journal of Applied Sciences, Engineering and Technology 5(4) (2013) 1351-1357.

DOI: 10.19026/rjaset.5.4872

Google Scholar

[12] J.K. Hirvonen, B.D. Sartwell, Ion Implantation, in: ASM Handbook Vol.5, ASM International, USA, 1994, pp.1680-1690.

Google Scholar

[13] C. Moulet, M.S. Goorsky, Lattice Strain Measurements in Hydrogen Implanted Materials for Layer Transfer Processes, in: M. Goorsky (Ed.), Ion Implantation, InTech, Rijeka, 2012, pp.65-88.

DOI: 10.5772/38713

Google Scholar

[14] M. Nastasi, J.W. Mayer, Ion Implantation and Synthesis of Materials, Springer, Springer-Verlag Berlin Heidelberg, (2006).

Google Scholar

[15] N. Ali, H. Samekto, M.I. Ghazali, M. Ridha, Surface modification of pure titanium by nitrogen ion implantation at different beam energy and dose, Key Eng. Mater. 462-463 (2011) 750-755.

DOI: 10.4028/www.scientific.net/kem.462-463.750

Google Scholar

[16] A.D. Anggono, W.A. Siswanto, Simulation of Ironing Process for Earring Reduction in Sheet Metal Forming, Applied Mechanics and Materials 465-466 (2014) 91-95.

DOI: 10.4028/www.scientific.net/amm.465-466.91

Google Scholar

[17] S. Amat, S. Busquier, A. Escudero, J.C. Trillo, Lagrange interpolation for continuous piecewise smooth functions, J. Comput. Appl. Math. 221(1) (2008) 47-51.

DOI: 10.1016/j.cam.2007.10.011

Google Scholar

[18] E. Berriochoa, A. Cachafeiro, J.M. Garcia Amor, An interpolation problem on the circle between Lagrange and Hermite problems, Journal of Approximation Theory 215 (2017) 118-144.

DOI: 10.1016/j.jat.2016.12.004

Google Scholar

[19] Z. Cheng, J.W. Mark, Channel estimation by modulated Lagrange interpolation, Signal Process. 90(9) (2010) 2749-2759.

DOI: 10.1016/j.sigpro.2010.03.026

Google Scholar

[20] D. Occorsio, M.G. Russo, Extended Lagrange interpolation on the real line, J. Comput. Appl. Math. 259 (2014) 24-34.

DOI: 10.1016/j.cam.2013.01.019

Google Scholar

[21] X.Z. Liang, R.H. Wang, L.H. Cui, J.L. Zhang, M. Zhang, Some researches on trivariate Lagrange interpolation, J. Comput. Appl. Math. 195(1–2) (2006) 192-205.

DOI: 10.1016/j.cam.2005.03.083

Google Scholar