Synthesis of Pseudoboehmite - Aging Effect

Article Preview

Abstract:

The Pseudoboehmite is an aluminum compound used as an alumina precursor and it is produced by sol-gel process. The sol-gel process is a methodology to produce porous, vitreous or crystalline ceramics started by molecular precursors. Pseudoboehmite with high purity, high specific surface area and porous homogeneity was obtained by sol-gel process. The material was used to produce gamma-alumina with surface area ranging from 211.2-288.1m2/g. It was studied the effect of aging time, temperature of aging and poly (vinyl alcohol) addition in the synthesis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-10

Citation:

Online since:

June 2019

Export:

Price:

[1] E.M. Moroz, K.I. Shefer, D.A. Zyuzin, A.S. Ivanova, E.V. Kulko, V.V. Goidin, V.V. Molchanov: Reaction Kinetics and Catalysis Letters. Vol. 87 (2) (2006), p.367.

DOI: 10.1007/s11144-006-0045-z

Google Scholar

[2] A.H. Munhoz Jr, L.F. Miranda, G.N. Uehara: AST - Advances in Science and Technology Vol. 45 (2006), p.260.

Google Scholar

[3] M. Rajamani, S.M. Maliyekkal: Carbohydrate Polymers Vol. 194 (2018), p.245.

Google Scholar

[4] L.F. Miranda, K.L.G. Cunha, I.T.F. Barbosa, T.J. Masson, A.H. Munhoz Jr, Obtaining Hydrogels based on PVP/PVAL/Chitosan Containing Pseudoboehmite Nanoparticles for Application in Drugs, Hydrogels Sajjad Haider and Adnan Haider, IntechOpen,. Available from: http://dx.doi.org/10.5772/intechopen.72007 (2018).

DOI: 10.5772/intechopen.72007

Google Scholar

[5] X. Zhang, W. Cui, K.L. Page, C.I. Pearce, M.E. Bowden, T.R. Graham, Z. Shen, P. Li, Z. Wang, S. Kerisit, A.T. N'Diaye, S.B. Clark, K.M. Rosso: Mechanisms Crystal Growth & Design Vol. 18 (6) (2018), p.3596.

DOI: 10.1021/acs.cgd.8b00394

Google Scholar

[6] B. Chen; X. Xu; X. Chen; L. Kong; D. Chen: Journal of Solid State Chemistry Vol. 265 (2018), p.237.

Google Scholar

[7] J.T. Kloprogge, L.V. Duong, B.J. Wood, R.L. Frost: Journal of colloid and interface Science Vol. 296 (2006), p.572.

Google Scholar

[8] W.N. Martens, J.T. Kloprogge, R.L. Frost, J.R. Bartlett: Journal of colloid and interface Science Vol. 247 (2002), p.132.

Google Scholar

[9] Y. Chen, A. Kelong, Y. Liu, L. Lu: Applied Materials & Interfaces Vol. 6 (1) (2014), p.655.

Google Scholar

[10] A.H. Munhoz Jr., R.W. Novickis, S.B. Faldini, R.R. Ribeiro, C.Y. Maeda, L.F. Miranda: Advances in Science and Technology Vol. 76 (2010), p.184.

Google Scholar

[11] L.F. de Miranda, L.J.P. Goulart, L.G. Andrade e Silva, A.C. Donadon, F.Y. Yamasaki, A.H. Munhoz Jr.: Journal of Nano Research (online) Vol. 47 (2017), p.96.

DOI: 10.4028/www.scientific.net/jnanor.47.96

Google Scholar

[12] A.H. Munhoz Jr., J.S. Martins, R.R. Ribeiro, L.F. Miranda, R.C. Andrades, K.C. Bertachini, L.G.A. Silva: Journal of Nano Research (online) Vol. 38 (2016), p.47.

DOI: 10.4028/www.scientific.net/jnanor.38.47

Google Scholar

[13] F.P. Faria, P. Souza Santos, H. Souza Santos: Materials Chemistry and Physics Vol. 76 (2002), p.267.

Google Scholar

[14] A.C. Vieira Coelho, G.A. Rocha, P. Souza Santos, H. Souza Santos, P.K. Kiyohara: Revista Matéria Vol. 13 (2) (2008), p.329.

DOI: 10.1590/s1517-70762008000200011

Google Scholar

[15] G.E.P. Box, J.S. Hunter, W.G. Hunter: Statistics for Experimenters: Design, Innovation, and Discovery. (Wiley, second ed. New Jersey 2005. ISBN 978-0471718130).

Google Scholar

[16] A.H. Munhoz Jr., T.J. Masson, L.F. de Miranda, A. Cabral Neto, R.C. Andrades, M.V. Rossi:, Defect and Diffusion Forum Vol. 365 (2015), p.226.

DOI: 10.4028/www.scientific.net/ddf.365.226

Google Scholar

[17] R.P. Pawar: Ultra Chemistry Vol. 11 (1) (2015), p.1.

Google Scholar

[18] N. Othman, N.A. Azahari, H. Ismail: Malaysian Polymer Journal Vol. 6 (6) (2011), p.147.

Google Scholar

[19] O.W. Guirguis, M.T.H. Moselhey: Natural Science Vol. 4 (1) (2012), p.57.

Google Scholar