Eletrochemical Behavior of Hot Swaged and Aged Ti-12Mo-13Nb Alloy

Article Preview

Abstract:

Recent studies have focused on the development of metastable beta-type Ti alloys with non-toxic elements such as Nb, Ta, Mo and Zr for biomedical applications. These alloys present low modulus, good mechanical compatibility and good corrosion resistance. Moreover, the processing variables can be controlled to produce microstructures with specific properties. In this regard, the objective of this work was to analyze the electrochemical behavior of Ti-13Nb-12Mo alloy hot forged and aged at 500 °C/24 h. The microstructure was analyzed by transmission electron microscopy. The corrosion tests were carried out under a NaCl solution at a temperature of 25 °C. The results showed that under the conditions studied Ti-12Mo-13Nb alloy exhibited passivation, which is desirable for corrosion resistance. Therefore the alloy is a potential alternative for the of Ti-6Al-4V used in orthopedic implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-298

Citation:

Online since:

July 2017

Export:

Price:

* - Corresponding Author

[1] Y.B. Tan, J.L. Duan, L.H. Yang, W.C. Liu, J.W. Zhang, R. P. Liu: Mater. Sci. Eng. A Vol. 698 (2014), p.226.

Google Scholar

[2] M. Wen, C. Wen, P. Hodgson, Y. Li: Materials and Design. Vol. 56 (2014), p.629.

Google Scholar

[3] Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda: Mater. Sci. Eng. A Vol. 398 (2005), p.28.

Google Scholar

[4] S. Guo, Q.K. Meng, X.N. Cheng, X.Q. Zhao: J. Mech. Behav. Biomed. Mat. Vol. 38 (2014), p.26.

Google Scholar

[5] S. Guo, Q.K. Meng, X.N. Cheng, X.Q. Zhao: Mater. Letters Vol. 133 (2014), p.236.

Google Scholar

[6] D. Kuroda, M. Niinomi, M. Morinaga, et al.: Mater Sci. Eng. A Vol. 243 (1998), p.244.

Google Scholar

[7] S. B. Gabriel, C.A. Nunes, G.A. Soares: Artif. Organs Vol. 32 (2008), p.299.

Google Scholar

[8] S.B. Gabriel, J. Dille, C.A. Nunes, G.A. Soares: Mat. Research Vol. 13 (2010), p.1.

Google Scholar

[9] A. Cremasco, W.H. Osório, C.M.A. Freire, A. Garcia, R. Caram: Electrochim Acta Vol. 53 (2008), p.4867.

Google Scholar

[10] C.R.M. Afonso, G.T. Aleixo, A.J. Ramirez, R. Caram: Mater. Sci. Eng. C. Vol. 27 (2007), p.908.

Google Scholar

[11] D.M. Gordin, T. Gloriant, Gh. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, D. Ansel: Mater. Letters Vol. 59 (2005), p.2959.

DOI: 10.1016/j.matlet.2004.09.064

Google Scholar

[12] R. Banerjee, S. Nag, H.L. Fraser: Mater. Sci. Eng C. Vol. 25 (2005), p.282.

Google Scholar

[13] W. Xu, K.B. Kim, J. Das et al.: Scr. Mater. Vol. 54 (2006), p. (1943).

Google Scholar

[14] N.T.C. Oliveira, G. Aleixo, R. Caram, A.C. Guastaldi: Mater. Sci. Eng. A Vols. 452-453 (2007), p.727.

Google Scholar

[15] S.B. Gabriel, L.H. de Almeida, C.A. Nunes, J. Dille, G.A. Soares: Mater. Sci. Eng. C. Vol. 33 (2013), p.3319.

Google Scholar

[16] S.B. Gabriel, J. Dille, P. Mei, R. Baldan, C.A. Nunes, L.H. De Almeida, M.C. Rezende: Mat. Research Vol. 18 (2015), p.8.

Google Scholar

[17] H. Matsumoto, S. Watanabe, S. Hanada: J. Alloys Compd. Vol. 439 (2007), p.146.

Google Scholar

[18] Y.L. Zhou, M. Niinomi, T. Akahori: Mater. Sci. Eng. A Vol. 384 (2004), p.92.

Google Scholar