Ceria Coatings Prepared by Sol-Gel Approach on AZ91 Magnesium Alloy

Article Preview

Abstract:

The ceria coatings on AZ91 substrates were successfully synthesized by chemical conversion and the corrosion resistance of AZ91 samples with and without ceria coatings were evaluated by means of electrochemical corrosion in 3.5 wt.% NaCl solution. According to the parameters derived from the polarization date, the Icorr (the corrosion current density) values of the coated samples are smaller than that of bare one, indicating that the corrosion resistance of AZ91 alloys has been improved to some extent. The influence of fluoridated pretreatment, inter-layer heat treatment, sintering temperature and the layer of films on the performance of ceria coatings were also investigated. It was found that the inter-layer heat treatment has no influence on improving the anticorrosion resistance of AZ91 alloy. In comparison with the bare one, the Icorr of optimal sample is about 0.0219mA/cm2, which decreases by two orders of magnitude, indicating that the ceria coatings could significantly improve the corrosion resistance of AZ91 magnesium alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1369-1380

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] B. Mordike, T. Ebert, Magnesium properties-applications-potential, Mater. Sci. Eng A. 302 (2001) 37-45.

Google Scholar

[2] Platform science and technology for advanced magnesium alloys in: Y. Kojima (Ed. ), Mater. Sci. Forum, Trans Tech Publ. 2000, (2016).

Google Scholar

[3] E.M. Gutman, Ya. Unigovski, M. Levkovich, et al, Infleuence of technological parameters of permanent mold casting and die casting on creep and strength of Mg alloy AZ91D, Mater. Sci. Eng A. 30 (1997) 234-236.

DOI: 10.1016/s0921-5093(97)00363-8

Google Scholar

[4] G.H. Wu, Y. Fan, H.T. Gao, et al, The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D, Mater. Sci. Eng. A, 408 (2005) 255-263.

DOI: 10.1016/j.msea.2005.08.011

Google Scholar

[5] W. Zhou, T. Shen, N.N. Aung, Effect of heat treatment on corrosion behavior of magnesium alloy AZ91D in simulated body fluid, Corros. Sci. 52 (2010) 1035-1041.

DOI: 10.1016/j.corsci.2009.11.030

Google Scholar

[6] A. Pardo, M.C. Merino, A.E. Coy, et al, Corrosion behaviour of magnesium/aluminium alloys in 3. 5 wt. % NaCl, Corros. Sci. 50 (2008) 823-834.

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[7] R. Drevet, A. Lemelle, V. Untereiner, et al, Morphological modifications of electrodeposited calcium phosphate coatings under acids effect, Appl. Surf. Sci. 268 (2013) 343-348.

DOI: 10.1016/j.apsusc.2012.12.093

Google Scholar

[8] H. Hotta, K. Yata, S. Kurihara, et al, Determination of chromium (III), chromium (VI) and total chromium in chromate and trivalent chromium conversion coatings by electrospray ionization mass spectrometry, Talanta, 88 (2012) 533-536.

DOI: 10.1016/j.talanta.2011.11.028

Google Scholar

[9] Sébastien Pommiers-Belin, Jérôme Frayret, Arnaud Uhart, et al, Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A, Appl. Surf Sci. 298 (2014) 199-207.

DOI: 10.1016/j.apsusc.2014.01.162

Google Scholar

[10] V.S. Protsenko, E.A. Vasil'eva, A.V. Tsurkan, et al. Fe/TiO2 composite coatings modified by ceria layer: Electrochemical synthesis using environmentally friendly methanesulfonate electrolytes and application as photocatalysts for organic dyes degradation, J. Chem. Eng. 5 (2016).

DOI: 10.1016/j.jece.2016.11.034

Google Scholar

[11] M. Sh. Xue, N. Peng, Ch.Q. Li, et al, Enhanced superhydrophilicity and thermal stability of ITO surface with patterned ceria coatings, Appl. Surf Sci. 329 (2015) 11-16.

DOI: 10.1016/j.apsusc.2014.12.145

Google Scholar

[12] H. Ardelean, I. Frateur, S. Zanna, et al, Corrosion protection of AZ91 magnesium alloy by anodizing in niobium and zirconium-containing electrolytes, Corros. Sci. 51 (2009) 3030-3038.

DOI: 10.1016/j.corsci.2009.08.030

Google Scholar

[13] D. Avnir, S. Braun, O. Lev, et al, Enzymes and other poteins entrapped in sol-gel materials, Chem. Mater. 6 (1994) 1605-1614.

DOI: 10.1021/cm00046a008

Google Scholar

[14] J. Trogl, I. Jirkova, P. Kuran, et al, Phospholipid fatty acids ac physiological indicators of Paracoccusdenitrificans encapsulated in silia sol-gel hydrogels. Sensors (Basel). 15 (2015) 3426-3434.

DOI: 10.3390/s150203426

Google Scholar

[15] D. Avnir, T. Coradin, O. Lev, et al, Recent bio-applications of sol-gel materials, Chem. Mater. 16 (2006) 1013-1030.

DOI: 10.1039/b512706h

Google Scholar

[16] G.S. Wu, A.Y. Wang, K.J. Ding, et al, Fabrication of Cr coating on AZ31 magnesium alloy by magnetron sputtering, Transactions of Nonferrous Metals Society of China. 18 (2008) 329-333.

DOI: 10.1016/s1003-6326(10)60226-9

Google Scholar

[17] K.T. Rie, J. WÖhle, A. Gebauer, Synthesis of thin coatings by plasma-assisited chemical vapour deposition using metallo-organic compounds as precursors, Sur. Coat Tech. 59 (1993) 202-206.

DOI: 10.1016/0257-8972(93)90083-z

Google Scholar

[18] A.N. Samant, B. Sh. Du, S.R. Paital, et al, Pulsed laser surface treatment of magnesium alloy: Corrosion between thermal model and experimental observations, J. Mater. Process. Technol. 209 (2009) 5060-5067.

DOI: 10.1016/j.jmatprotec.2009.02.004

Google Scholar

[19] K.B. Zhang, Z.Y. Fu, Z.Y. Zhang, et al, Microstructure and mechanical properties of CoCrFeNiAlx high-entropy alloys, Mater. Sci. Eng A. 508 (2009) 214-219.

Google Scholar