Design Optimization of a High Temperature 1.2 kV 4H-SiC Buried Grid JBS Rectifier

Article Preview

Abstract:

1.2 kV SiC buried grid junction barrier Schottky (BG-JBS) diodes are demonstrated. The design considerations for high temperature applications are investigated. The design is optimized in terms of doping concentration and thickness of the epilayers, as well as grid size and spacing dimensions, in order to obtain low on-resistance and reasonable leakage current even at high temperatures. The device behavior at temperatures ranging from 25 to 225ºC is analyzed and measured on wafer level. At 100 A/cm2 a forward voltage drop of 2 V at 25ºC and 3 V at 225ºC is achieved. At reverse voltage of 1 kV, a leakage current density below 0.1 µA/cm2 and below 0.1 mA/cm2 is measured at 25 and 225ºC, respectively. This proves the effective shielding effect of the BG-JBS design and provides benefits in high voltage applications, particularly for high temperature operation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-458

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] R. Rupp, H. Treu, S. Voss, F. Björk, T. Reimann, Proc. 18th IEEE ISPSD (2006) 1-4.

Google Scholar

[2] H. Bartolf, A. Mihaila, L. Knoll, V. K. Sundaramoorthy, R. A. Minamisawa, E. Bianda, Proc. 17th EPE´15 ECCE-Europe 1 (2015) 1-10.

DOI: 10.1109/epe.2015.7311684

Google Scholar

[3] M. Berthou, P. Godignon, J. Calvo, A. Mihaila, E. Bianda, I. Nistor, Mat. Sci. Forum 778-780 (2014) 867-870.

DOI: 10.4028/www.scientific.net/msf.778-780.867

Google Scholar

[4] F. Dahlquist, H. Lendenmann, M. Östling, Mat. Sci. Forum 353-356 (2001) 683-686.

DOI: 10.4028/www.scientific.net/msf.353-356.683

Google Scholar

[5] K. Konishi, N. Kameshiro, N. Yokoyama, A. Shima, Y. Shimamoto, Mater. Sci. Forum, 821-823 (2015) 596-599.

DOI: 10.4028/www.scientific.net/msf.821-823.596

Google Scholar

[6] N. Ren, J. Wang, K. Sheng, IEEE Trans. Electron Devices 61 (2014) 2459-2465.

Google Scholar

[7] H. Bartolf, Mat. Sci. Forum 821-823 (2015) 604-607.

Google Scholar

[8] Y. Huang, T. Erlbacher, J. Buettner, G. Wachutka, Proc. 28th IEEE ISPSD (2016) 683-686.

Google Scholar

[9] S. Palanisamy, S. Fichtner, J. Lutz, T. Basler, R. Rupp, Proc. 28th IEEE ISPSD (2016) 235-238.

Google Scholar

[10] V. d'Alessandro, A. Irace, D. Breglio, P. Spirito, A. Bricconi, R. Carta, D. Raffo, L. Merlin, Proc. 18th IEEE ISPSD (2006) 1-4.

DOI: 10.1109/ispsd.2006.1666097

Google Scholar

[11] P. Brosselard, X. Jorda, M. Vellvehi, P. Godignon, J. Millan, J. P. Bergman, B. Lambert, Proc. 19th IEEE ISPSD (2007) 285-288.

DOI: 10.1109/ispsd.2007.4294988

Google Scholar

[12] M. Bakowski, J-K. Lim, W. Kaplan, A. Schöner, ECS Trans. 41 (2011) 155-162.

Google Scholar

[13] R. K. Malhan, M. Bakowski, Y. Takeuchi, N. Sugiyama, A. Schöner, Phys. Status Solidi A 206 (2009) 2308-2328.

DOI: 10.1002/pssa.200925254

Google Scholar

[14] M. Bakowski, J. -K. Lim, W. Kaplan, ECS Trans. 50 (2013) 415-424.

Google Scholar

[15] J. -K. Lim, S. A. Reshanov, W. Kaplan, A. Zhang, T. Hjort, A. Schöner, M. Bakowski, H. -P. Nee, Mat. Sci. Forum 821-823 (2015) 600-603.

DOI: 10.4028/www.scientific.net/msf.821-823.600

Google Scholar

[16] B. N. Pushbakaran, S. B. Bayne, A. A. Ogunniyi, Pulsed Power Conf. (PPC) (2015).

Google Scholar