Creation and Functionalization of Defects in SiC by Proton Beam Writing

Article Preview

Abstract:

Proton beam writing was carried out into high purity semi-insulating 4H-SiC bulk substrates. Luminescent defects created in the SiC by proton beam writing using 1.7 MeV-proton micro beams were investigated at room temperature using confocal laser scanning microscope. As a result, photoluminescence peak around 900 nm associated with silicon vacancy was observed for the irradiated SiC without post implantation process such as annealing. The overall depth profile of photon counts detected from irradiated areas is in good agreement with simulated vacancy depth profile. This suggests that silicon vacancy can be applied to ion tracking detector. In addition, since silicon vacancy is known as single photon source of which spins can be controlled at RT, PBW is expected to be a useful tool to fabricate spin qubits.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-237

Citation:

Online since:

May 2017

Export:

Price:

* - Corresponding Author

[1] S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, T. Ohshima, Nature Materials 13 (2014) 151-156.

DOI: 10.1038/nmat3806

Google Scholar

[2] D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. U. Hassan, N. T. Son, E. Janzén, T. Ohshima, D. D. Awschalom, Nature Materials 14 (2015) 160-163.

DOI: 10.1038/nmat4144

Google Scholar

[3] M. Widmann, S. Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L. P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzen, J. Wrachtrup, Nature Materials 14 (2015) 164-168.

DOI: 10.1038/nmat4145

Google Scholar

[4] F. Fuchs, B. Stender, M. Trupke, D. Simin, J. Pflaum, V. Dyakonov, G.V. Astakhov, Nat. Comm. 6 (2015) 7578.

DOI: 10.1038/ncomms8578

Google Scholar

[5] A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T. J. Karle, A. Gali, S. Prawer, J. C. McCallum, B. C. Johnson, Nature Communications 6 (2015) 7781.

DOI: 10.1038/ncomms8783

Google Scholar

[6] A. Lohrmann, S. Castelletto, J. R. Klein, T. Ohshima, M. Bosi, M. Negri, D. W. M. Lau, B. C. Gibson, S. Prawer, J. C. McCallum, B. C. Johnson, Appl. Phys. Lett. 108 (2016) 021107.

DOI: 10.1063/1.4939906

Google Scholar

[7] J. A. Van Kan, A. A. Bettiol, F. Watt, Nano Lett. 6 (2006) 579-582.

Google Scholar

[8] F. Watt, M. B. H. Breese, A. A. Bettiol, J. A. Van Kan, Mater. Today 10 (2007) 20-29.

Google Scholar

[9] N. Uchiya, T. Harada, M. Murai, H. Nishikawa, J. Haga, T. Sato, Y. Ishii, T. Kamiya, Nucl. Instr. and Meth. B 260 (2007) 405-408.

Google Scholar

[10] S. Onoda, M. Haruyama, T. Teraji, J. Isoya, W. Kada, O. Hanaizumi, T. Ohshima, Phys. Status Solidi A 212 (2015) 2641–2644.

DOI: 10.1002/pssa.201532219

Google Scholar

[11] Information on http: /www. taka. qst. go. jp/index_e. html.

Google Scholar

[12] E. Janzen, A. Gali, P. Carlsson, A. Gallstrom, B. Magnusson, N. T. Son, Physica B 404 (2009) 4354-4358.

Google Scholar

[13] A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Science 276 (1997) 2012-(2014).

Google Scholar

[14] M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, M. D. Lukin, Science 316 (2007) 1312-1316.

DOI: 10.1126/science.1139831

Google Scholar

[15] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbruggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, J. Wrachtrup, Nature 506 (2014) 204-207.

DOI: 10.1038/nature12919

Google Scholar

[16] Information on http: /www. srim. org.

Google Scholar