A Novel Synthesis of Solid-Solid (SSMePCM) by In Situ Polymerization

Article Preview

Abstract:

In this research solid-solid microencapsulated phase change material (SSMePCM) with high thermal energy storage density (177.6 Jg/1) was synthesized successfully by in situ polymerization using biodegradable natural polymer chitosan as shell and polyethylene glycol (PEG-1000) as core. The morphology, chemical structure and thermal properties were characterized by optical microscopy (OM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The results show that the obtained SSMePCM dispersed individually with a spherical shape. Author (s) recommends the all set thermal and chemically steady microcapsule for thermal energy storage purposes as novel synthesized SSMePCM with latent heat storage capacities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] K. Pielichowska, K. Pielichowski. Phase change materials for thermal energy storage, Progress in materials science. 65 (2014) 67-123.

DOI: 10.1016/j.pmatsci.2014.03.005

Google Scholar

[2] B. Xu, Z. Li. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material, Applied Energy. 121 (2014) 114-122.

DOI: 10.1016/j.apenergy.2014.02.007

Google Scholar

[3] X. Yang. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage, Solar Energy. 99 (2014) 259-266.

DOI: 10.1016/j.solener.2013.11.021

Google Scholar

[4] Y. Zhang. Experiment on heat storage characteristic of microencapsulated phase change material slurry, Solar Energy Materials and Solar Cells. 95 (2011) 2726-2733.

DOI: 10.1016/j.solmat.2011.02.015

Google Scholar

[5] T. Kousksou. Paraffin wax mixtures as phase change materials, Solar Energy Materials and Solar Cells. 94 (2010) 2158-2165.

DOI: 10.1016/j.solmat.2010.07.005

Google Scholar

[6] X. Li. Fabrication and stability of form-stable diatomite/paraffin phase change material composites, Energy and Buildings. 76 (2014) 284-294.

DOI: 10.1016/j.enbuild.2014.02.082

Google Scholar

[7] Z. -H. Chen. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier, Applied Energy. 91 (2012) 7-12.

DOI: 10.1016/j.apenergy.2011.08.041

Google Scholar

[8] M. N. Pervez. Investigation on the Thermo-Regulating Fabric by Using Phase Change Material for Modern Textile Practical Application, American Journal of Polymer Science & Engineering. 3 (2015) 90-99.

Google Scholar

[9] A. Khan, M. N. Pervez. A Study on Phase Change Material with Reference to Thermal Energy Storage by Using Polyethyleneglycol-1000 to Create Thermo-Regulating Fabric, International Journal of Textile Science. 4 (2015) 53-59.

Google Scholar

[10] Q. Meng, J. Hu. A poly (ethylene glycol)-based smart phase change material, Solar Energy Materials and Solar Cells. 92 (2008) 1260-1268.

DOI: 10.1016/j.solmat.2008.04.026

Google Scholar

[11] A. A. Aydın, H. Okutan. High-chain fatty acid esters of myristyl alcohol with even carbon number: Novel organic phase change materials for thermal energy storage—1, Solar Energy Materials and Solar Cells. 95 (2011) 2752-2762.

DOI: 10.1016/j.solmat.2011.04.015

Google Scholar

[12] A. Sarı. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials, Solar Energy Materials and Solar Cells. 95 (2011) 3195-3201.

DOI: 10.1016/j.solmat.2011.07.003

Google Scholar

[13] A. Khan. New Approach of Phase Change Material Encapsulation through in situ Polymerization to Improve Thermo-Regulating Property of Cellulose, Asian Journal of Chemistry. 28 (2016) 1191.

DOI: 10.14233/ajchem.2016.19612

Google Scholar

[14] K. Chen. Linear polyurethane ionomers as solid–solid phase change materials for thermal energy storage, Solar Energy Materials and Solar Cells. 130 (2014) 466-473.

DOI: 10.1016/j.solmat.2014.07.036

Google Scholar

[15] M. Xiao. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity, Energy conversion and management. 43 (2002) 103-108.

DOI: 10.1016/s0196-8904(01)00010-3

Google Scholar

[16] E. Yilmaz. Grafting of poly (triethylene glycol dimethacrylate) onto chitosan by ceric ion initiation, Reactive and Functional Polymers. 67 (2007) 10-18.

DOI: 10.1016/j.reactfunctpolym.2006.08.003

Google Scholar

[17] F. Salaün. Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization, Chemical Engineering Journal. 155 (2009) 457-465.

DOI: 10.1016/j.cej.2009.07.018

Google Scholar

[18] K. S. Suslick,M. W. Grinstaff. Protein microencapsulation of nonaqueous liquids, Journal of the American Chemical Society. 112 (1990) 7807-7809.

DOI: 10.1021/ja00177a058

Google Scholar

[19] H. Peng. Methoxy poly (ethylene glycol)-grafted-chitosan based microcapsules: synthesis, characterization and properties as a potential hydrophilic wall material for stabilization and controlled release of algal oil, Journal of food engineering. 101 (2010).

DOI: 10.1016/j.jfoodeng.2010.06.019

Google Scholar

[20] S. Tripathi. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications, International Journal of Biological Macromolecules. 45 (2009) 372-376.

DOI: 10.1016/j.ijbiomac.2009.07.006

Google Scholar

[21] C. Rodríguez-Tenreiro. Characterization of cyclodextrincarbopol interactions by DSC and FTIR, Journal of thermal analysis and calorimetry. 77 (2004) 403-411.

DOI: 10.1023/b:jtan.0000038981.30494.f4

Google Scholar

[22] F. A. Tirkistani. Thermal analysis of some chitosan Schiff bases, Polymer degradation and stability. 60 (1998) 67-70.

DOI: 10.1016/s0141-3910(97)00020-7

Google Scholar

[23] T. Ouchi. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution, Polymer. 39 (1998) 5171-5175.

DOI: 10.1016/s0032-3861(97)10020-9

Google Scholar