Microstructure and Mechanical Properties of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloys Joints with Electron Beam Welding

Article Preview

Abstract:

In this work, a Ti2AlNb based intermetallic alloy with the composition of Ti–22Al–24Nb–0.5Mo (at. %) pre-alloyed powder was firstly produced by gas atomization, and then fully dense powder metallurgy (PM) Ti2AlNb alloy was prepared by a hot isostatic pressing (HIPing) procedure. The HIPed alloy shows uniform microstructure with low number of porosities. In order to broaden the application field of PM Ti2AlNb alloys, electron beam welding (EBW) was proposed to join the intermetallics. The joint quality, microstructure and microhardness of PM Ti2AlNb alloy processed by EBW were characterized, and the results showed that the both base alloy and EBW joints have high metallurgy quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-326

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] P. R. Smith, A. H. Rosenbergerm, M. J. Shepard and R. Wheeler IV, Review A P/M approach for the fabrication of an orthorhombic titanium aluminide for MMC applications, J. Mater. Sci., 2000, 35, 3169–3179.

Google Scholar

[2] C. J. Boehlert, Part III. The tensile behavior of Ti–Al–Nb O + BCC orthorhombic alloys, Metall. Mater. Trans. A, 2001, 30A, 1977–(1988).

DOI: 10.1007/s11661-001-0010-4

Google Scholar

[3] J. Kumfert, C. Leyens, Microstructure evolution, phase transformation and oxidation of an orthorhombic Titanium Aluminide alloy, 1997, Structural Intermetallics, 895–904.

Google Scholar

[4] Paul R. Smith, Andrew H. Rosenberger and Michael J. Shepard, Tape cast second generation orthorhombic-based Titanium Aluminide alloys for MMC applications, Scr. Mater., 1999, 41, 221–228.

DOI: 10.1016/s1359-6462(99)00162-1

Google Scholar

[5] W. Wang, W. D. Zeng, C. Xue, X. B. Liang, J. W. Zhang, Designed bimodal lamellar O microstructures in Ti2AlNb based alloy: Microstructure evolution, tensile and creep properties, Mater. Sci. Eng., A, 2014, 618, 288–294.

DOI: 10.1016/j.msea.2014.09.035

Google Scholar

[6] W. Chen, J. W. Li, L. Xu and B. Lu, Development of Ti2AlNb Alloys: Opportunities and Challenges, Adv. Mater. Process. 2014, 23–27.

Google Scholar

[7] W. Lu, Y. W. Shi, Y. P. Lei, and X. Y. Li, Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy, Mater. Des., 2012, 34, 509–515.

DOI: 10.1016/j.matdes.2011.09.004

Google Scholar

[8] C. C. Wu, Study on microstructure and mechanical properties of electron beam welding joint of Ti2AlNb alloy, Master thesis, Institute of Metal Research, Chinese Academy of Sciences, China, (2014).

Google Scholar

[9] X. Chen, F. Q. Xie, T. J. Ma, W. Y. Li, X. W. Wu, Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy, J. Alloys Compd., 2015, 646, 490–496.

DOI: 10.1016/j.jallcom.2015.05.198

Google Scholar

[10] B. Wu, J. W. Li, Z. Y. Tang, Study on the Electron Beam Welding Process of ZTC4 Titanium Alloy, Rare. Metal. Mat. Eng., 2014, 43, 786–790.

DOI: 10.1016/s1875-5372(14)60084-9

Google Scholar

[11] L. Xu, R. P. Guo, C. G. Bai, J. F. Lei and R. Yang, Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti–6Al–4V alloy from atomized powder, J. Mater. Sci. Technol., 2014, 30, 1289–1295.

DOI: 10.1016/j.jmst.2014.04.011

Google Scholar

[12] Sanjay K. Vajpai, Kei Ameyama, A novel powder metallurgy processing approach to prepare fine-grained Ti-rich TiAl-based alloys from pre-alloyed powder, Interrmetallics, 2013, 42, 146–155.

DOI: 10.1016/j.intermet.2013.06.006

Google Scholar

[13] J. Wu, L. Xu, B. Lu, Y. Y. Cui, R. Yang, Preparation of Ti2ALNb alloy by powder metallurgy and its rupture lifetime, 2014, Chin. J. Mater. Res., 28, 387–394.

Google Scholar

[14] J. Kumfert, C. Leyens, Microstructure evolution, phase transformation and oxidation of an orthorhombic Titanium Aluminide alloy, 1997, Structural Inermetallics, 895–904.

Google Scholar

[15] Satoshi Emura, Aya Araoka, Masuo Hagiwara, B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy, Scripta Mater., 2003, 48, 629–634.

DOI: 10.1016/s1359-6462(02)00462-1

Google Scholar

[16] Savas Erdem, X-ray computed tomography and fractal analysis for the evaluation of segregation resistance, strength response and accelerated corrosion behaviour of self-compacting lightweight concrete, Constr. Build. Mater., 2014, 61, 10–17.

DOI: 10.1016/j.conbuildmat.2014.02.070

Google Scholar

[17] H. Toda, E. Maire, S. Yamauchi, H. Tsuruta, T. Hiramatsu, M. Kobayashi, In situ observation of ductile fracture using X-ray tomography technique, Acta Metall., 2011, 59, 1995–(2008).

DOI: 10.1016/j.actamat.2010.11.065

Google Scholar

[18] S. G. Wang, S. C. Wang, L. Zhang, Application of high resolution transmission X-ray tomography in material science, Acta Metall. Sin., 2013, 49, (8), 897–910.

Google Scholar

[19] H. Jiang, K. Zhang, F. A. Garcia-pastor, M. H. Loretto, D. Hu, P. J. Withers, M. Preuss, X. Wu, Microstructure and properties of hot isostatically pressed powder and extruded Ti25V15Cr2Al0. 2C, Mater. Sci. Technol., 2011, 27, 1241–1248.

DOI: 10.1179/026708310x12852304599825

Google Scholar

[20] J. H. Peng, Y. Mao, S. Q. Li, X. F. Sun, Microstructure controlling by heat treatment and complex processing for Ti2AlNb based allloys, Mater. Sci. Eng., A, 2001, 299, 75–80.

DOI: 10.1016/s0921-5093(00)01417-9

Google Scholar

[21] X. Chen, W. D. Zeng, W. Wang, X. B. Liang, J. W. Zhang, Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment, Mater. Sci. Eng., A, 2013, 573, 183–189.

DOI: 10.1016/j.msea.2013.03.003

Google Scholar

[22] W. Wang, W. D. Zeng, C. Xue, X. B. Liang, J. W. Zhang, Microstructure evolution, creep, and tensile behavior of a Ti–22Al–25Nb (at%) orthorhombic alloy, Mater. Sci. Eng., A, 2014, 603, 176–184.

DOI: 10.1016/j.msea.2014.02.004

Google Scholar