Solidification Mechanism of the Melt Conditioned Twin Roll Cast Magnesium Alloy

Article Preview

Abstract:

Twin roll casting (TRC) has been demonstrated to be a process capable of producing Mg sheets at a significantly reduced cost. However, the quality of the Mg sheets produced by the TRC process is limited due to the formation of coarse columnar grains and severe centreline segregation, which reduces both the strength and ductility of Mg-alloys. In this paper, melt conditioned (MC) has been employed prior to twin roll casting (TRC) of AZ31 alloy to understand its effect on the solidification mechanism. For comparison, AZ31 alloy strips were also produced through conventional TRC process. The results showed that the solidification mechanism can be completely altered by introducing MC in TRC process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 790-791)

Pages:

291-295

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] S. Lee, Y.H. Chen, J.Y. Wang, Isothermal sheet formability of magnesium alloy AZ31 and AZ61, J. Mater. Process. Technol. 124 (2002) 19-24.

DOI: 10.1016/s0924-0136(02)00038-9

Google Scholar

[2] H. Takuda, T. Enami, K. Kubota, The formability of a thin sheet Mg-8. 5Li-1Zn alloy, J. Mater. Process. Technol. 101 (2000) 281-286.

DOI: 10.1016/s0924-0136(00)00484-2

Google Scholar

[3] H. Takuda, H. Fujimoto, N. Hatta, Modelling on flow stress Mg-Al-Zn alloys at elevated temperatures, J. Mater. Process. Technol. 80-81 (1998) 513-516.

DOI: 10.1016/s0924-0136(98)00154-x

Google Scholar

[4] N. Stanford, M.R. Barnett, Fine grained AZ31 produced by conventional thermo-mechanical processing, J. Alloy. Compd. 466 (2008) 182–88.

DOI: 10.1016/j.jallcom.2007.11.082

Google Scholar

[5] M.R. Barnett, N. Stanford, P. Cizek, A. Beer, Z. Xuebin, Z. Keshavarz, Mechanism of deformation in magnesium alloys and the challenge of extending room temperature plasticity, JOM61 (2009) 19–24.

DOI: 10.1007/s11837-009-0115-6

Google Scholar

[6] M. Ferry, Direct strip casting of metals and alloys, Woodhead Publishing Ltd., Cambridge, (2006).

Google Scholar

[7] Sanjeev Das, Shouxun Ji, Omer El Fakir, Liliang Wang, John Dear, Jianguo Lin, Ian Stone, Geoff Scamans, Zhongyun Fan, Melt Conditioned Twin Roll Casting (MC-TRC) of Thin Mg-Alloy Strips for Direct Stamping of Mg Components, Materials Science Forum, 765 (2013).

DOI: 10.4028/www.scientific.net/msf.765.170

Google Scholar

[8] I. Bayandorian, Y. Huang, Z. Fan, S. Pawar, X. Zhou, G.E. Thompson, The impact of melt conditioned twin-roll casting on the downstream processing of an AZ31 magnesium alloy, Metall. Mater. Trans. A 43 (2012) 1035-1047.

DOI: 10.1007/s11661-011-1006-3

Google Scholar

[9] D. Liang, W. Borbidge, D.R. East, R.V. Allen: US Patent No. 7, 028, 749 B2, (2006).

Google Scholar

[10] Z. Fan, G. Liu, Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process, Acta Mater. 53 (2005) 4345–4357.

DOI: 10.1016/j.actamat.2005.05.033

Google Scholar

[11] Z. Fan, Y. Wang, M. Xia, S. Arumuganathar, Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing, Acta Materialia 57 (2009) 4891-4901.

DOI: 10.1016/j.actamat.2009.06.052

Google Scholar

[12] J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Materials Science and Engineering, 65 (1984) 75-83.

DOI: 10.1016/0025-5416(84)90201-5

Google Scholar

[13] H. Men, B. Jiang, Z. Fan, Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt, Acta Materialia, 58 (2010) 6526-6534.

DOI: 10.1016/j.actamat.2010.08.016

Google Scholar