Dye Sensitized Solar Cell: A Summary

Article Preview

Abstract:

Dye sensitized solar cell (DSSC) devices incorporating organic and inorganic materials have found a host of applications. The search for low-cost, high efficient and flexible devices has lead to a remarkable increase in the research and development of solar cell. The current review, describes the constitution components of DSSC in a detailed manner and their development and challenges are also discussed. We focused on various structural modifications in wide band gap nanocrystalline semiconductor materials for an efficient electron transfer to reduce the recombination rate. Fruitful attempts have been made to design new molecular dyes for the wide range of absorption in the visible region. Co-Sensitization is an appropriate technique to enhance the absorption range of dye molecules and to increase the efficiency of solar cell. Moreover hole transport materials, there are the efficient tool to replace redox couple based liquid electrolyte and it produce stable solid state DSSC. The successful modification of counter electrode with different morphology promotes the rate electron transfer into electrolyte. This review also covers the update technology to construct efficient, stable and flexible dye sensitized solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-24

Citation:

Online since:

October 2013

Export:

Price:

[1] M. Gratzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.

Google Scholar

[2] W. West, First hundred years of spectral sensitization. Proc. Vogel. Cent. Symp. Photogr. Sci. Eng. 18 (1974) 35-48.

Google Scholar

[3] J. Moser, Note about the gain photoelectric currents by optical sensitization, Monatsh. Chem. 8 (1887) 373.

Google Scholar

[4] S. Namba, Y. Hishiki, Color sensitization of zinc oxide with cyanine dyes. J. Phys. Chem. 69 (1965) 774-779.

DOI: 10.1021/j100887a010

Google Scholar

[5] H. Gerischerr, M.E. Micchel-Beyerle, F. Rebentrost and H. Tributsch, Sensitization of charge injection into semiconductors with large band gap, Electrochim. Acta 13 (1968) 1509-1515.

DOI: 10.1016/0013-4686(68)80076-3

Google Scholar

[6] E. Daltrozzo, H. Tributsch, On the mechanism of spectral sensitization: Rhodamin B sensitized electron transfer to zinc oxide, Photogr. Sci. Eng. 19 (1975) 308-314.

Google Scholar

[7] M.T. Spitler, M. Calvin, Electron transfer at sensitized TiO2 electrodes, J. Chem. Phys. 66 (1977) 4294-4306.

Google Scholar

[8] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[9] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, C. Aravind Kumar, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629- 634.

DOI: 10.1126/science.1209688

Google Scholar

[10] R.Yoshimura. Proceedings of the 35th Annual Technical Conference of the Society of Vacuum Coaters 362 (1992).

Google Scholar

[11] G. Braunstein, A. Muraviev, H. Saxena, N. Dhere, V. Richter, and R. Kalish, p type doping of zinc oxide by arsenic ion implantation, Appl. Phys. Lett. 87 (2005) 192103.

DOI: 10.1063/1.2128064

Google Scholar

[12] J.-O Park, J.-H. Lee, J.-J. Kim, S.-H. Cho, Y. K. Cho, Crystallization of indium tin oxide thin films prepared by RF-magnetron sputtering without external heating, Thin solid Films 474 (2005) 127-132.

DOI: 10.1016/j.tsf.2004.08.172

Google Scholar

[13] H. Kim, C. M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, J. Appl. Phys. 86 (1999) 645-6462.

DOI: 10.1063/1.371708

Google Scholar

[14] T.Kawashima, T. Ezure , K. Okada, H. Matsui, K. Goto, N. Tanabe, FTO/ITO double- layered transparent conductive oxide for dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem. 164 (2004) 199-202.

DOI: 10.1016/j.jphotochem.2003.12.028

Google Scholar

[15] B. Yoo, K. Kim, S. H. Lee, W. M. Kim, N.-G. Park, ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 873-877.

DOI: 10.1016/j.solmat.2008.02.013

Google Scholar

[16] I. Zumeta, J.A. Ayllón, B. González, X. Domenech, E. Vigil, TiO2 films obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact, Sol. Energy Mater Sol. Cells 93 (2009) 1728-1732.

DOI: 10.1016/j.solmat.2009.05.022

Google Scholar

[17] C. Sima, C. Grigoriu, S. Antohe, Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO, Thin Solid Films 519 (2010) 595-597.

DOI: 10.1016/j.tsf.2010.07.002

Google Scholar

[18] F. Ruffino, I. Crupi, E. Carria, S. Kimiagar, F. Simone, M.G. Grimaldi, Nanostructuring thin Au films on transparent conductive oxide substrates, Mater. Sci. Eng.: B 178 (2013) 533-541.

DOI: 10.1016/j.mseb.2012.10.012

Google Scholar

[19] D.-J. Kwak, B.-H. Moon, D.-K. Lee, C.-S. Park,Y.-M. Sung, Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application, J. Electrical Eng. Technol. 6 (2011) 684-687.

DOI: 10.5370/jeet.2011.6.5.684

Google Scholar

[20] J.-Y. Lin, J.-H. Liao, T.-C. Wei, Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells, Electrochem. Solid-State Lett. 14 (4), (2011) D41-D44.

DOI: 10.1149/1.3533917

Google Scholar

[21] H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist, A. Hagfeldt, A new method to make dye-sensitized nanocrystalline solar cells at room temperature, J. Photochem. Photobiol. A: Chem. 145 (2001) 107-112.

DOI: 10.1016/s1010-6030(01)00564-0

Google Scholar

[22] H. Lindstrom, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, A. Hagfeldt, A new method for manufacturing nanostructured electrodes on plastic substrates, Nano Lett. 1 (2001) 97-100.

DOI: 10.1021/nl0055254

Google Scholar

[23] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, G. Nelles, Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers, Nature Mater. 4 (2005) 607-611.

DOI: 10.1038/nmat1433

Google Scholar

[24] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, Michael Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun. (2006) 4004–4006.

DOI: 10.1039/b608279c

Google Scholar

[25] T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, Highly efficient plastic substrate dye- sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes, Chem. Commun. (2007) 4767–4769.

DOI: 10.1039/b709911h

Google Scholar

[26] T. Miyasaka, M. Ikegami, Y. Kijitori, Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania, J. Electrochem. Soc.154 (2007) A455–A461.

DOI: 10.1149/1.2712140

Google Scholar

[27] K.-M. Lee, S.-J. Wu, C.-Y. Chen, C.-G. Wu, M. Ikegami, K. Miyoshi, T. Miyasaka, K.-C. Ho, Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer, J. Mater. Chem.19 (2009) 5009-5015.

DOI: 10.1039/b903852c

Google Scholar

[28] H.C. Weerasinghe, P.M. Sirimanne, G.P. Simon, Y.B. Cheng, Fabrication of efficient solar cells on plastic substrates using binder-free ball milled titania slurries, J. Photochem. Photobiol. A: Chem. 206 (2009) 64-70.

DOI: 10.1016/j.jphotochem.2009.05.013

Google Scholar

[29] T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, Highly efficient plastic- substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%, Sol. Energy Mater. Sol. Cells 94 (2010) 812-816.

DOI: 10.1016/j.solmat.2009.12.029

Google Scholar

[30] N. Fu, X. Xiao, X. W. Zhou, J. B. Zhang, Y. Lin, Electrodeposition of platinum on plastic substrates as counter electrodes for flexible dye-sensitized solar cells, J. Phys. Chem. C 116 (2012) 2850-2857.

DOI: 10.1021/jp206676s

Google Scholar

[31] X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, E. Abe, Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells, Thin Solid Films 472 (2005) 242-245.

DOI: 10.1016/j.tsf.2004.07.083

Google Scholar

[32] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim, A 4.2% efficient flexible dye- sensitized TiO2 solar cells using stainless steel substrate, Sol. Energy Mater. Sol. Cells 90 (2006) 574-581.

DOI: 10.1016/j.solmat.2005.04.025

Google Scholar

[33] J. Georgieva, S. Armyanov, E. Valova, I. Poulios, S. Sotiropoulos, Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates, Electrochim. Acta 51 (2006) 2076-2087.

DOI: 10.1016/j.electacta.2005.07.017

Google Scholar

[34] M. Toivola, F. Ahlskog, P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Sol. Energy Mater. Sol. Cells 90 (2006) 2881-2893.

DOI: 10.1016/j.solmat.2006.05.002

Google Scholar

[35] J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee, M. G. Kang, Fabrication of an efficient dye- sensitized solar cell with stainless steel substrate, J. Electrochem. Soc. 155 (2008) 145-149.

DOI: 10.1149/1.2909548

Google Scholar

[36] X. Huang, P. Shen, B. Zhao, X. Feng, S. Jiang, H. Chen, H. Li, S. Tan, Stainless steel mesh- based flexible quasi-solid dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 94 (2010) 1005-1010.

DOI: 10.1016/j.solmat.2010.02.005

Google Scholar

[37] A. Zaban, A. Meier, A.J. Nozik, B.A. Gregg, Proceedings of the symposium on electrode materials and processes for energy conversion and storage-IV 97–13 (1997) 306–316.

Google Scholar

[38] N.G. Park, G. Schlichthorl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas, A.J. Frank, Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4, J. Phys. Chem. B 103 (1999) 3308-3314.

DOI: 10.1021/jp984529i

Google Scholar

[39] H. Y. Byun, R. Vittal, D. Y. Kim, K. J. Kim, Beneficial role of Cetyltrimethylammonium bromide in the enhancement of photovoltaic properties of dye-sensitized rutile TiO2 solar cells, Langmuir 20 (2004) 6853-6857.

DOI: 10.1021/la040032q

Google Scholar

[40] A. Fujishima, K. Honda, electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.

DOI: 10.1038/238037a0

Google Scholar

[41] M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem. 44 (2005) 6841-6851.

DOI: 10.1021/ic0508371

Google Scholar

[42] S. Lee, I.-S. Cho, J. H. Lee, D. H. Kim, D. W. Kim, J. Y. Kim, H. Shin, J.-K. Lee, H. S. Jung, N.-G. Park, K. Kim, M. J. Ko, K. S. Hong, Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices, Chem. Mater. 22 (2010) 1958-1965.

DOI: 10.1021/cm902842k

Google Scholar

[43] M. Wei, Y. Konishi, H. Zhou, M. Yanagida, H. Sugihara, H. Arakawa, Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide, J. Mater. Chem. 16 (2006) 1287-1293.

DOI: 10.1039/b514647j

Google Scholar

[44] B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites, J. Phys. Chem. B 110 (2006) 15932-15938.

DOI: 10.1021/jp063972n

Google Scholar

[45] J.-H. Yoon, S.-R. Jang, R. Vittal, J. Lee, K.-J. Kim, TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells, J. Photochem. Photobiol. A: CHem. 180 (2006) 184-188.

DOI: 10.1016/j.jphotochem.2005.10.013

Google Scholar

[46] S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim,T. Hyeon, Y.-E. Sung, Nanorod- based dye-sensitized solar cells with improved charge collection efficiency, Adv. Mater 20 (2008) 54-58.

DOI: 10.1002/adma.200701819

Google Scholar

[47] K. Kanie, T. Sugimoto, Shape control of anatase TiO2 nanoparticles by amino acids in a gel– sol system, Chem. Commun. (2004) 1584-1585.

DOI: 10.1039/b404220d

Google Scholar

[48] J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon, T. Hyeon, Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol−gel ester elimination reaction and their application to photocatalytic inactivation of e. coli, J. Phys. Chem. B 109 (2005) 15297-15302.

DOI: 10.1021/jp052458z

Google Scholar

[49] Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken, Sonochemical synthesis of titania whiskers and nanotubes, Chem. Commun. (2001) 2616-2617.

DOI: 10.1039/b108968b

Google Scholar

[50] E. Stathatos, P. Lianos, F. DelMonte, D. Levy, D. Tsiourvas, Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates, Langmuir 13 (1997) 4295-4300.

DOI: 10.1021/la9701642

Google Scholar

[51] S.-H. Chien, Y.-C. Liou, M.-C. Kuo, Preparation and characterization of nanosized Pt/Au particles on TiO2-nanotubes, Synth. Method 152, (2005) 333-336.

DOI: 10.1016/j.synthmet.2005.07.254

Google Scholar

[52] J. Das, F. S. Freitas, I. R. Evans, A. F. Nogueira, D. Khushalani, A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells, J. Mater. Chem. 20 (2010) 4425-4431.

DOI: 10.1039/b921373b

Google Scholar

[53] A. Kumar, A. R. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells, J. Phys. Chem. C 114 (2010) 7787-7792.

DOI: 10.1021/jp100491h

Google Scholar

[54] B. C. O'Regan, J. R. Durrant, P. M. Sommeling, N. J. Bakker, Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit, J. Phys. Chem. C 111 (2007) 14001-14010.

DOI: 10.1021/jp073056p.s001

Google Scholar

[55] J. Wu, G. Xie, J. Lin, Z. Lan, M. Huang, Y. Huang, Enhancing photoelectrical performance of dye-sensitized solar cell by doping with europium-doped yttria rare-earth oxide, J. Power Sources 195 (2010) 6937-6940.

DOI: 10.1016/j.jpowsour.2010.04.081

Google Scholar

[56] W.-K. Tu, C.-J. Lin, A. Chatterjee, G.-H. Shiau, S.-H. Chien, A novel nanocomposite TiO2 photoanode for highly efficient dye-sensitized solar cells, J. Power Sources 203 (2012) 297- 301.

DOI: 10.1016/j.jpowsour.2011.11.052

Google Scholar

[57] N. F. Atta, H. M.A. Amin, M. W. Khalil, A. Galal, Nanotube arrays as photoanodes for dye sensitized solar cells using metal phthalocyanine dyes, Int. J. Electrochem. Sci. 6 (2011) 3316-3332.

Google Scholar

[58] A. Pandikumar, R. Ramaraj, TiO2-Au nanocomposite materials modified photoanode with dual sensitizer for solid-state dye-sensitized solar cell, J. Renewable Sustainable Energy 5, (2013) 043101.

DOI: 10.1063/1.4812641

Google Scholar

[59] A. Elsanousia, N. Elamina, S. Elhouria, A. Abdallaha, Highly ordered TiO2 nanotubes and their application to dye sensitized solar cells, J. Appl. Indust. Sci. 1 (2013) 39-42

Google Scholar

[60] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Sol. Energy Mater. Sol. Cells 73 (2002) 51-58.

DOI: 10.1016/s0927-0248(01)00110-6

Google Scholar

[61] A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia , J. T. Hupp, Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells, Phys. Chem. Chem. Phys. 8 (2006) 4655-4659.

DOI: 10.1039/b610566a

Google Scholar

[62] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nature Mater. 4 (2005) 455-459.

DOI: 10.1038/nmat1387

Google Scholar

[63] S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, Samuel Paul Raj, Photovoltaic performance of solid-state solar cells based on ZnO nanosheets sensitized with low-cost metal-free organic dye, Sol. Energy 85 (2011) 1787-1793.

DOI: 10.1016/j.solener.2011.04.016

Google Scholar

[64] S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, Samuel Paul Raj, Metal-free low-cost organic dye-sensitized ZnO nanorod photoanode for solid-state solar cell, Mater. Express 1 (2011) 307-314.

DOI: 10.1166/mex.2011.1035

Google Scholar

[65] A. Pandikumar, K. M. Saranya, R. Ramaraj, Sheaf-like-ZnO@Ag nanocomposite materials modified photoanode for low-cost metal-free organic dye-sensitized solid-state solar cells, Appl. Phys. Lett. 101 (2012) 093112.

DOI: 10.1063/1.4748287

Google Scholar

[66] S. Gubbala, H. B. Russell, H. Shah, B. Deb, J. Jasinski, H. Rypkema, M. K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells, Energy Environ. Sci. 2 (2009) 1302-1309.

DOI: 10.1039/b910174h

Google Scholar

[67] N.-G. Park, M. G. Kang, K. S. Ryu, K. M. Kim, S. H. Chang , Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells, J. Photochem. Photobiol. A: Chem. 161 (2004) 105-110.

DOI: 10.1016/s1010-6030(03)00280-6

Google Scholar

[68] P. Guo, M.A. Aegerter, Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process, Thin Solid Films 351 (1999) 290-294.

DOI: 10.1016/s0040-6090(99)00215-1

Google Scholar

[69] Y. Pellegrin, L. L. Pleux, E. Blart, A. Renaud, B. Chavillon, N. Szuwarski, M. Boujtita, L. Cario, S. Jobic, D. Jacquemin, F. Odobel, Ruthenium polypyridine complexes as sensitizers in NiO based p-type dye-sensitized solar cells: Effects of the anchoring groups, J. Photochem. Photobiol. A: Chem. 219 (2011) 235-242.

DOI: 10.1016/j.jphotochem.2011.02.025

Google Scholar

[70] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(Hexylthio)thiophene conjugated bipyridine, J. Phys. Chem. C 113 (2009) 6290-6297.

DOI: 10.1021/jp9006872

Google Scholar

[71] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc.127 (2005) 16835- 16847.

DOI: 10.1021/ja052467l

Google Scholar

[72] C.-C. Chou, K.-L. Wu, Y. Chi, W.-P. Hu, S. J. Yu, G.-H. Lee, C.-L. Lin, P.-T. Chou, Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells, Angew. Chem. Int. Ed. 50 (2011) 2054-2058.

DOI: 10.1002/anie.201006629

Google Scholar

[73] M.. K. Nazeeruddin, T. Bessho, L. Cevey, S. Ito, C. Klein, F. De Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai, M. Graetzel, A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell, J. Photochem. Photobiol. A: Chem. 185 (2007) 331-337.

DOI: 10.1016/j.jphotochem.2006.06.028

Google Scholar

[74] Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang, P. Wang, An extremely high molar extinction coefficient ruthenium sensitizer in dye-sensitized solar cells: The effects of π-conjugation extension, J. Phys.Chem C 113 (2009) 14559-14556.

DOI: 10.1021/jp904096g

Google Scholar

[75] J.-J. Kim, H. Choi, S. Paek, C. Kim, K. Lim, M.-J. Ju, H. S. Kang, M.-S. Kang, J. Ko, A new class of cyclometalated ruthenium sensitizers of the type ĈN̂N for efficient dye- sensitized solar cells, Inorg .Chem 50 (2011) 11340- 11347.

DOI: 10.1021/ic200872a

Google Scholar

[76] G. Sauvé, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal, N. S. Lewis, Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes, J. Phys. Chem B 104 (2000) 6821-6836.

DOI: 10.1021/jp0002143

Google Scholar

[77] D. Kuciauskas, J. E. Monat, R. Villahermosa, H. B. Gray, N. S. Lewis, J. K. McCusker, Transient absorption spectroscopy of ruthenium and osmium polypyridyl complexes adsorbed onto nanocrystalline TiO2 photoelectrodes, J. Phys. Chem B 106 (2002) 9347- 9358.

DOI: 10.1021/jp014589f

Google Scholar

[78] S. Ferrere, B. A. Gregg, Photosensitization of TiO2 by [FeII(2,2'-bipyridine-4,4'- dicarboxylic acid)2(CN)2]:  Band selective electron injection from ultra-short-lived excited states, J. Am. Chem. Soc. 120 (1998) 843-844.

DOI: 10.1021/ja973504e

Google Scholar

[79] A.Zollinger, Color chemistry: Syntheses, Properties and Application of Organic dyes and Pigments, 3rd ed.Verlage Hervetica Chemica Acta, Zurich, and Wiley-VCH, Weinheim, (2003)

Google Scholar

[80] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, High-conversion-efficiency organic dye-sensitized solar cells with a novelindoline dye, Chem. Commun. (2008) 5194-5196.

DOI: 10.1039/b809093a

Google Scholar

[81] M. Xu, D. Zhou, N. Cai, J. Liu, R. Li, P. Wang, Electrical and photophysical analyses on the impacts of arylamine electron donors in cyclopentadithiophene dye-sensitized solar cells, Energy Environ. Sci. 4 (2011) 4735-4742 .

DOI: 10.1039/c1ee02432a

Google Scholar

[82] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, C. Kim, A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun, (2007) 4887-4889.

DOI: 10.1039/b709859f

Google Scholar

[83] T. Horiuchi , H. Miura , K. Sumioka, S. Uchida, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126 (2004) 12218-12219.

DOI: 10.1021/ja0488277

Google Scholar

[84] G. Calogero, G. D. Marco, S. Cazzanti, S. Caramori, R. Argazzi, A. D. Carlo, C. A. Bignozzi, Efficient dye-sensitized solar cells using red turnip and purple wild sicilian prickly pear. Int. J. Mol. Sci. 11 (2010) 254-267.

DOI: 10.3390/ijms11010254

Google Scholar

[85] G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy matter .Sol. Cells 90 (2010) 1220-1226.

DOI: 10.1016/j.solmat.2005.07.007

Google Scholar

[86] H. Zhou, L. Wu, Y. Gao, T. Ma, Dye-sensitized solar cells using 20 natural dyes as sensitizers. J. Photochem. Photobiol. A: Chem. 219 (2011) 188-194.

DOI: 10.1016/j.jphotochem.2011.02.008

Google Scholar

[87] W. H. Lai, Y. H. Su, L. G. Teoh, M. H. Hon, Commercial and natural dyes as photo- sensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. A: Chem. 195 (2008) 307-313.

DOI: 10.1016/j.jphotochem.2007.10.018

Google Scholar

[88] H. J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20 (2010) 13-19.

DOI: 10.1002/adfm.200901476

Google Scholar

[89] B. E. Hardin, A. Sellinger, T. Moehl, R. Humphry-Baker , J.-E. Moser, P. Wang, S. M. Zakeeruddin , M. Gratzel, M. D. McGehee, Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells, J. Am .Chem. Soc. 133 (2011) 10662- 10667.

DOI: 10.1021/ja2042172

Google Scholar

[90] D. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin , M. K. Nazeeruddin, M. Gratzel, Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells. Langmuir 23 (2007)10906-10909.

DOI: 10.1021/la702411n

Google Scholar

[91] Y. Chen, Z. Zeng, C. Li, W. Wang, X. Wangand B. Zhang, Highly efficient co- sensitization of nanocrystalline TiO2 electrodes with plural organic dyes New J. Chem. 29 (2005) 773-776.

DOI: 10.1039/b502725j

Google Scholar

[92] P. Zuo, C. Li, Y.-S. Wu, X.-C. Ai, X.-S. Wang, B.-W. Zhang, J.-P. Zhang, Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2. J. Photochem. Photobio. A: Chem. 183 (2006) 138-145.

DOI: 10.1016/j.jphotochem.2006.03.007

Google Scholar

[93] G. D. Sharma, S. P. Singh, R. Kurchania, R. J. Ball, Cosensitization of dye sensitized solar cells with a thiocyanate free Ru dye and a metal free dye containing thienylfluorene conjugation RSC Adv. 3 (2013) 6036-6043.

DOI: 10.1039/c3ra23155k

Google Scholar

[94] Z. Zhang, P. Chen, T. N. Murakami, S. M. Zakeeruddin, M. Gratzel, The 2,2,6,6- tetramethyl-1-piperidinyloxy radical: an efficient, iodine- free redox mediator for dye- sensitized solar cells. Adv. Funct. Mater. 18 (2008) 341-346.

DOI: 10.1002/adfm.200701041

Google Scholar

[95] M. Wang, N. Chamberland, L. Breau, J.-E. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin, M. Gratzel, An organic redox electrolyte to rival triiodide/iodide in dye- sensitized solar cells. Nat.Chem. 2 (2010) 385-389.

DOI: 10.1038/nchem.610

Google Scholar

[96] P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, M. Gratzel, A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J. Am. Chem. Soc.126 (2004) 7164-7165.

DOI: 10.1021/ja048472r

Google Scholar

[97] Z.-S. Wang, K. Sayama, H. Sugihara, Efficient eosin y dye-sensitized solar cell containing Br−/Br3− electrolyte. J. Phys. Chem. B. 109 (2005) 22449-22455.

DOI: 10.1021/jp053260h

Google Scholar

[98] M. Cheng, X. Yang, F. Zhang, J. Zhao, L. Sun, Efficient dye-sensitized solar cells based on hydroquinone/benzoquinone as a bioinspired redox couple. Angew. Chem. Int. Ed.51 (2012) 9896-9899.

DOI: 10.1002/anie.201205529

Google Scholar

[99] T. Daeneke, Y. Uemura, N. W. Duffy, A. J. Mozer, N. Koumura, U. Bach, L. Spiccia, Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide–ferrocyanide redox couple. Adv. Mater. 24 (2012) 1222-1225.

DOI: 10.1002/adma.201104837

Google Scholar

[100] U. Bach, D. Lupo , P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(1998) 585-583.

DOI: 10.1038/26936

Google Scholar

[101] J. Burschka, A. Dualeh, F. Kessler, E. Baranoff , N.L. Cevey-Ha, C. Yi, M.K. Nazeeruddin M. Gratzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc 133 (2011) 18042-18045.

DOI: 10.1021/ja207367t

Google Scholar

[102] I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485 (2012) 486-489.

DOI: 10.1038/nature11067

Google Scholar

[103] J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. Sato, A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Funct. Mater 17 (2007) 2645-2652.

DOI: 10.1002/adfm.200600621

Google Scholar

[104] T. N. Murakami, M. Gratzel, Counter electrodes for DSC: Application of functional materials as catalysts, Inorg. Chim. Acta 361 (2008) 572-580.

DOI: 10.1016/j.ica.2007.09.025

Google Scholar

[105] G. Khelashvili, S. Behrens, C. Weidenthaler, C. Vetter, A. Hinsch, R. Kern, K. Skupien, E. Dinjus, H. Bonnemann, Catalytic platinum layers for dye solar cells: A comparative study. Thin solid films 511 (2006) 342-348.

DOI: 10.1016/j.tsf.2005.12.059

Google Scholar

[106] G. Zhu, L. Pan, T. Lu, X. Liu, T. Lv, T. Xu, Z. Sun, Electrophoretic deposition of carbon nanotubes films as counter electrodes of dye-sensitized solar cells. Electrochim. Acta 56 (2011) 10288-10291.

DOI: 10.1016/j.electacta.2011.09.028

Google Scholar

[107] A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44, 99-177, (1996).

DOI: 10.1016/0927-0248(96)00063-3

Google Scholar

[108] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 47 (2009) 2704-2708.

DOI: 10.1016/j.carbon.2009.05.028

Google Scholar

[109] J. G. Nam, Y. J. Park, B. S. Kim, J.S. Lee, Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scr. Mater. 62 (2010) 148-150.

DOI: 10.1016/j.scriptamat.2009.10.008

Google Scholar

[110] B. Zhao, H. Huang, P. Jiang, H. Zhao, X. Huang, P. Shen, D. Wu, R. Fu, S. Tan, flexible counter electrodes based on mesoporous carbon aerogel for high-performance dye-sensitized solar cells. J. Phys. Chem. C 115 (2011) 22615-22621.

DOI: 10.1021/jp206043a

Google Scholar

[111] R. Easwaramoorthi, W. J. Lee, D. Y. Lee, J. S. Song, Nanocarbon counterelectrode for dye sensitized solar cells. Appl. Phys. Lett. 90 (2007) 173103.

DOI: 10.1063/1.2731495

Google Scholar

[112] W. J. Lee, R. Easwaramoorthi, D. Y. Lee, J. S. Song, Performance variation of carbon counter electrode based dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells 92 (2008) 814-818.

DOI: 10.1016/j.solmat.2007.12.012

Google Scholar

[113] K. Li, Y. Luo, Z. Yu, M. Deng, D. Li, Q. Meng, Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem. Commun. 11 (2009) 1346-1349.

DOI: 10.1016/j.elecom.2009.04.025

Google Scholar

[114] X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 114 (2010) 11673-11677.

DOI: 10.1021/jp202475m

Google Scholar

[115] W. J. Lee, R. Easwaramoorthi, D. Y. Lee, J. S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interface 1 (2009) 1145-1149.

DOI: 10.1021/am800249k

Google Scholar

[116] P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey, Q. Qiao, Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode. Energy Environ. Sci. 2 (2009) 426-429.

DOI: 10.1039/b815947p

Google Scholar

[117] P. Joshi, L. Zhang, Q. Chen, D. Galipeau, H. Fong, Q. Qiao, Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interf. 2 (2010) 3572-3577.

DOI: 10.1021/am100742s

Google Scholar

[118] M. Wu, X. Lin, A. Hagfeldt, T. Ma, A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. 47 (2011) 4535-4537.

DOI: 10.1039/c1cc10638d

Google Scholar

[119] J. Chen, B. Li, J. Zheng, J. Zhao, H. Jing, Z. Zhu, Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells. Electrochim. Acta 56 (2011) 4624-4630.

DOI: 10.1016/j.electacta.2011.02.097

Google Scholar

[120] S. Peng, Y. Wu, P. Zhu, V. Thavasi, S. G. Mhaisalkar, S. Ramakrishna, Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells J. Photochem. Photobiol. A: Chem. 223 (2011) 97-102.

DOI: 10.1016/j.jphotochem.2011.08.004

Google Scholar

[121] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10 (2008) 1555- 1558.

DOI: 10.1016/j.elecom.2008.08.007

Google Scholar

[122] M. Wu, X. Lin, A. Hagfeldt, T. Ma, Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 50 (2011) 3520- 3524.

DOI: 10.1002/anie.201006635

Google Scholar

[123] J.S. Jang, D.J. Ham, R. Easwaramoorthi , J. Lee, J. S. Lee, Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chem. Commun. 46 (2010) 8600-8602.

DOI: 10.1039/c0cc02247k

Google Scholar