Crystallization and Properties of Glass-Ceramics of the K2O-BaO-B2O3-Al2O3-TiO2 System

Article Preview

Abstract:

Crystallization behavior and properties of glass-ceramics with content (mol%) of: K2O = 3-25, BaO = 3-27, B2O3 = 8-26, Al2O3 = 13-18, and TiO2 = 31-47 were studied. The relation between the initial composition and the formation of the crystalline phases was analyzed. When increasing [Al2O3] and [BaO], was increased the temperature of crystallization; likewise, different barium potassium titanates appeared with [BaO] = 3-13 (Group 1), whereas, different barium titanates were obtained with [BaO] =13-30 (Group 2). The influence of chemical composition on the properties of density, mechanical strength, chemical durability and dielectric properties (dielectric constant and dielectric losses), was discussed. Glass-ceramics with high mechanical resistance in the range of 189-480 MPa and permittivity values between 4.03 and 25.31, and dielectric losses < 2 x 10-4 at 1MHz were produced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-132

Citation:

Online since:

April 2013

Export:

Price:

[1] S. Jiin-Jyh, C. Chia-Hua, Sinterable ferroelectric glass-ceramics containing (Sr, Ba)Nb2O6 crystals, Ceram. Int. 29 (2003) 447-453.

DOI: 10.1016/s0272-8842(02)00186-4

Google Scholar

[2] M.A. Gonzáles-Lozano, A. Gorokhovsky, and J.I. Escalante, Vitrification and crystallization in the system of K2O–B2O3–TiO2, J. Non-Cryst. Solids 355 (2009) 114-119.

DOI: 10.1016/j.jnoncrysol.2008.10.003

Google Scholar

[3] N. Bao, X. Feng, L. Shen and X. Lu, Calcination syntheses of a series of potassium titanates and their morphologic evolution, Cryst. Growth Des. 2 (2002) 437-442.

DOI: 10.1021/cg025541+

Google Scholar

[4] X. Meng, D. Wang, J. Liu, B. Lin and Z. Fu, Effects of titania different phases on the microstructure and properties of K2Ti6O13 nanowires, Solid State Commun. 137 (2006) 146-149.

DOI: 10.1016/j.ssc.2005.11.004

Google Scholar

[5] Y. Liu, T. Qi and Y. Zhang, Synthesis of hexatitanate and titanium dioxide fibers by ion-exchange approach, Mater. Res. Bull. 42 (2007) 40-45.

DOI: 10.1016/j.materresbull.2006.05.013

Google Scholar

[6] S.C. Tjong and Y.Z. Meng, Performance of potassium titanate whisker reinforced polyamide-6 composites, Polymer 39 (1998) 5461-5466.

DOI: 10.1016/s0032-3861(97)10294-4

Google Scholar

[7] S.Q. Wu, Z.S. Wei and S.C. Tjong, The mechanical and thermal expansion behavior of an Al–Si alloy composite reinforced with potassium titanate whisker, Compos. Sci. Technol. 60 (2000) 2873-2880.

DOI: 10.1016/s0266-3538(00)00160-3

Google Scholar

[8] F. Xin, D. Xiaosong, S. Yijun, W. Huaiyuan, S. Shenghua and L. Xiaohua, A study on the friction and wear behavior of polytetrafluoroethylene filled with potassium titanate whiskers, Wear 261 (2006) 1208-1212.

DOI: 10.1016/j.wear.2006.03.005

Google Scholar

[9] Y. Sining, W. Xiaoli, L. Bo and X. Delong, Dielectric properties Ca-substituted barium strontium titanate ferroelectric ceramics, Solid State Commun. 143 (2007) 461-465.

DOI: 10.1016/j.ssc.2007.06.031

Google Scholar

[10] L. Jung-A, L. Joon-Hyung and K. Jeong-Joo, Effect of borate glass additives on the sintering behaviour and dielectric properties of BaTi4O9 ceramics, J. Eur. Ceram. Soc. 26 (2006) 2135-2138.

DOI: 10.1016/j.jeurceramsoc.2005.09.081

Google Scholar

[11] Y. Kumar, Md.A. Mohiddon, A. Srivastava and K.L. Yada, Effect of Ni doping on structural and dielectric properties of BaTiO3, Indian J. Eng. Mater. Sci. 16 (2009) 390-394.

Google Scholar

[12] T. Kokubo, M. Nishimura and M. Tashiro, Infrared transmission of (R2O OR R'O)(TiO2, Nb2O5 OR Ta2O5)Al2O3 glasses, J. Non-Cryst. Solids 22 (1976) 125-134.

DOI: 10.1016/0022-3093(76)90013-2

Google Scholar

[13] J.J. Ruiz-Valdés, A.V. Gorokhovsky, J.I. Escalante-Garcia, G. Mendoza-Suárez, Glass–ceramic materials with regulated dielectric properties based on the system BaO–PbO–TiO2–B2O3–Al2O3, J. Eur. Ceram. Soc. 24 (2004) 1505-1508.

DOI: 10.1016/s0955-2219(03)00531-4

Google Scholar

[14] M.A. González, A . Gorokhovsky, J.I. Escalante, P. Ponce, M.A. Escobedo, E. López and V. Mojica, Glass-forming tendency in the K2O-BaO-B2O3-Al2O3-TiO2 system, Int. J. Phys. Sci. 6 (2011) 8164-8170.

DOI: 10.5897/ijps11.762

Google Scholar

[15] O.P. Thakur, D. Kumar, O. Parkash, L. Pandey, Effect of K2O addition on crystallization and microstructural behaviour of the strontium titanate-borosilicate glass-ceramic system, Mater. Lett. 23 (1995) 253-260.

DOI: 10.1016/0167-577x(95)00043-7

Google Scholar

[16] P. Pernice, S. Esposito, A. Aronne and V.N. Sigaev, Structure and crystallization behavior of glasses in the BaO–B2O3–Al2O3 system, J. Non-Cryst. Solids 258 (1999) 1-10.

DOI: 10.1016/s0022-3093(99)00554-2

Google Scholar

[17] E. Demirkesen, E. Maytalman, Effect of Al2O3 additions on the crystallization behaviour and bending strength of a Li2O–ZnO–SiO2 glass-ceramic, Ceram. Int. 27 (2001) 99-104.

DOI: 10.1016/s0272-8842(00)00048-1

Google Scholar

[18] P. Pernice, S. Esposito and A. Aronne, Structure and nonisothermal crystallisation of glasses in the BaO–B2O3–TiO2 system, Phys. Chem. Glasses 39 (1998) 222-227.

Google Scholar

[19] J. Cheng and W. Chen, Formation and structure of titanate glasses, J. Non-Cryst Solids 80 (1986) 135-140.

Google Scholar

[20] M.L. Craus, N. Cornei, I. Berdan, C. Mita, M. N. Palamaru, The magnetoresistance of (Tb1−x Smx)0. 6Sr0. 4MnO3+γ manganites, Ceram. Inter. 30 (2004) 477-452.

DOI: 10.1016/s0272-8842(03)00130-5

Google Scholar

[21] D.R. Uhlman, N.J. Kreidl: Glass: Science and Technology (Academic Press, EUA 1983).

Google Scholar

[22] J. M. Stevels, in Handbuch der Physik, Edited by S. Flugge, Springer, Berlin, Germany (1957).

Google Scholar

[23] Moulson A J, Herbert J M: Electroceramics, Materials, Properties and Applications (John Wiley and Sons Ltd, 2003).

Google Scholar