Room Temperature Brittlement of T2 in the Mo-Si-B System

Article Preview

Abstract:

Compression and three-point bending tests were conducted at room temperature (RM) on the Mo5SiB2 (T2) alloy, which was prepared by sparking plasma sintering (SPS). It was found that almost no plastic deformation occured in the T2 alloy before failure but with a tremendous compressive strength of 2907 MPa. The fracture toughness determined from the single edge notch bend specimen is 3.34 MPa·m1/2, similar to the value of 3.5 MPa·m1/2 in ɑ-Al2O3. Once the cleavage crack initiated near the notch under continuous loads, it propagated on a certain plane (001) until the specimen completely fractured. In this work, the electronic structure was also calculated by the first-principles method, indicating that the contribution to RM brittleness is mainly caused by the covalent bonds which arrange alternately in the T2 phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

132-138

Citation:

Online since:

February 2013

Export:

Price:

[1] P. Mandal, A.J. Thom, M.J. Kramer, V. Behrani, M. Akinc, Oxidation behavior of Mo-Si-B alloys in wet air, Mater. Sci. Eng. A. 371 (2004) 335-342.

DOI: 10.1016/j.msea.2003.12.025

Google Scholar

[2] F. Zhang, L.T. Zhang, A.D. Shan, J. Sh. Wu, Oxidation of stoichiometric poly- and single-crystalline MoSi2 at 773 K, Intermetallics. 14 (2006) 406-411.

DOI: 10.1016/j.intermet.2005.08.001

Google Scholar

[3] E. Ström, Mechanical properties of Mo5Si3 intermetallics as a function of composition, Mater. Charact. 55 (2005) 402-411.

DOI: 10.1016/j.matchar.2005.09.001

Google Scholar

[4] M. Akinc, M.K. Meyer, M.J. Kramer, A.J. Thom, J.J. Huebsch, B. Cook, Boron-doped molybdenum silicides for structural applications, Mater. Sci. Eng. A. 261 (1999) 16-23.

DOI: 10.1016/s0921-5093(98)01045-4

Google Scholar

[5] C.A. Nunes, R. Sakidja, Z. Dong, J.H. Perepezko, Liquidus projection for the Mo-rich portion of the Mo-Si-B system, Intermetallics. 8 (2000) 327-337.

DOI: 10.1016/s0966-9795(99)00088-6

Google Scholar

[6] R.W. Bartlett, J.W. Mccamont, P.R. Gage, Structure and chemistry of oxide films thermally grown on molybdenum silicides, J. Am. Ceram. Soc. 48 (1965) 551-558.

DOI: 10.1111/j.1151-2916.1965.tb14671.x

Google Scholar

[7] M.K. Meyer, M. Akinc, Oxidation behavior of boron modified Mo5Si3 at 800-1300 ℃, J. Am. Ceram. Soc. 79 (1996) 938-944.

DOI: 10.1111/j.1151-2916.1996.tb08528.x

Google Scholar

[8] V. Supatarawanich, D.R. Johnson, C.T. Liu, Effects of microstructure on the oxidation behavior of multiphase Mo-Si-B alloys, Mater. Sci. Eng. A. 344 (2003) 328 -339.

DOI: 10.1016/s0921-5093(02)00446-x

Google Scholar

[9] A.R. Abbasi, M. Shamanian, Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment, Mater. Sci. Eng. A. 528 (2011) 3295-3301.

DOI: 10.1016/j.msea.2011.01.033

Google Scholar

[10] R.D. Field, D.J. Thoma, J.C. Cooley, F. Chu, C.L. Fu, M.H. Yoo, W.L. Hults, C.M. Cady, Dislocation in Mo5SiB2 T2 phase, Intermetallics. 9 (2001) 863-868.

DOI: 10.1016/s0966-9795(01)00083-8

Google Scholar

[11] R. Sakidja, H. Sieber, J. H. Perepezko, The formation of Mo precipitates in a supersaturated Mo5SiB2 intermetallic phase, Phil. Mag. Lett. 79 (1999) 351-357.

DOI: 10.1080/095008399177192

Google Scholar

[12] R. Sakidja, J.H. Perepezko, S. Kim, N. Sekido, Phase stability and structural defects in high-temperature Mo-Si-B alloys, Acta Mater. 56 (2008) 5223-5244.

DOI: 10.1016/j.actamat.2008.07.015

Google Scholar

[13] C.J. Rawn, J.H. Schneibel, C.M. Hoffmann, C.R. Hubbard, The crystal structure and thermal expansion of Mo5SiB2, Intermetallics. 9 (2001) 209-216.

DOI: 10.1016/s0966-9795(00)00113-8

Google Scholar

[14] T. Hayashi, K. Ito, K. Ihara, M. Fujikura, M. Yamaguchi, Creep of single crystalline and polycrystalline T2 phase in the Mo-Si-B system, Intermetallics. 12 (2004) 699-704.

DOI: 10.1016/j.intermet.2004.02.009

Google Scholar

[15] K. Ihara, K. Ito, K. Tanaka, M. Yamaguchi, Mechanical properties of Mo5SiB2 single crystals, Mater. Sci. Eng. A. 329-331 (2002) 222-227.

DOI: 10.1016/s0921-5093(01)01575-1

Google Scholar

[16] K. Ito, K. Ihara, K. Tanaka, M. Fujikura, M. Yamaguchi, Physical and mechanical properties of single crystals of the T2 phase in the Mo-Si-B system, Intermetallics. 9 (2001) 591-602.

DOI: 10.1016/s0966-9795(01)00049-8

Google Scholar

[17] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias. J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045-1097.

DOI: 10.1103/revmodphys.64.1045

Google Scholar

[19] J.B. Wachtman, W.R. Cannon, M.J. Matthewson, Mechanical properties of ceramics, Second ed., John Wiley &Sons, Inc., (2009).

Google Scholar

[20] Y.J. -Z. Xu, J.X. Shang, F.H. Wang, First-principles study of electronic properties and stability of Nb5SiB2 (001) surface, Chin. Phys. B. 20 (2011) 037101-7.

Google Scholar

[21] D.M.P. Júnior, C.A. Nunesa, G.C. Coelho, F. Ferreira, Liquidus projection of the Nb-Si-B system in the Nb-rich region, Intermetallics. 11 (2003) 251-255.

DOI: 10.1016/s0966-9795(02)00249-2

Google Scholar

[22] K.C.G. Candioto, C.A. Nunes, G.C. Coelho, P.A. Suzuki, Microstructural characterization of Nb-B-Si alloys with omposition in the Nb-Nb5Si2B (T2-phase) vertical section, Mater. Charact. 47 (2001) 241-245.

DOI: 10.1016/s1044-5803(01)00176-0

Google Scholar

[23] H.Z. Zhang, S.Q. Wang, First-principles study of Ti3AC2 (A = Si, Al) (001) surfaces, Acta Mater. 55 (2007) 4645-655.

DOI: 10.1016/j.actamat.2007.04.033

Google Scholar

[24] J.A. Dean, Lange's handbook of chemistry, fifteenth ed., McGraw-Hill, New York, (1999).

Google Scholar