Simulation of the Incomplete Ionization of the n-Type Dopant Phosphorus in 4H-SiC, Including Screening by Free Carriers

Article Preview

Abstract:

The simulation of the incomplete ionization of substitutional dopants in Silicon Carbide (SiC) is often performed using Boltzmann statistics and ionization energy values that do not depend on free carrier concentrations. But in the case of heavy doping Fermi-Dirac statistics is needed, while the case of an inhomogeneous dopants distribution or that of an excess carrier injection requires local free carrier concentration-dependent impurity ionization energies. Here a model for describing partial ionization from diluted to high homogeneous doping densities in SiC and in thermal equilibrium is presented and compared with results on Phosphorus doped 4H-SiC.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Pages:

397-400

Citation:

Online since:

March 2011

Export:

Price:

[1] J. S. Blakemore: Semiconductor Statistics (Pergamon Press, USA 1962).

Google Scholar

[2] M. Ruff, H. Mitlehner and R. Helbig: IEEE Trans. Electron Dev. 41 (1994), p.1040.

Google Scholar

[3] M. Ikeda, H. Matsunami and T. Tanaka: Phys. Rev. B 22 (1980), p.2842.

Google Scholar

[4] S. Kagamihara, H. Matsuura, T. Hatakeyama, T. Watanabe, M. Kushibe, T. Shinohe and K. Arai: J. Appl. Phys. 96 (2004), p.5601.

DOI: 10.1063/1.1798399

Google Scholar

[5] S. Greulich-Weber: phys. stat. sol. (a) 162 (1997), p.95.

Google Scholar

[6] M. Laube, F. Schmid, G. Pensl, G. Wagner, M. Linnarsson and M. Maier: J. Appl. Phys. 92 (2002), p.549.

Google Scholar

[7] G. L. Pearson and J. Bardeen: Phys. Rev. 75 (1949), p.865.

Google Scholar

[8] A. Koizumi, J. Suda and T. Kimoto: J. Appl. Phys. 106 (2009), p.013716.

Google Scholar

[9] A. G. Milnes: Deep Impurities in Semiconductors (John Wiley & Sons, USA 1973).

Google Scholar

[10] A. Martinez, U. Lindefelt, M. Hjelm and H. -E. Nilsson: J. Appl. Phys. 91 (2002), p.1359.

Google Scholar

[11] V. L. Bonch-Bruyevich: The Electronic Theory of Heavily Doped Semiconductors (Elsevier, UK 1966).

Google Scholar

[12] R. B. Dingle: Phil. Mag. 46 (1955), p.813.

Google Scholar

[13] A. Holubec, A. D. Stauffer, P. Acacia and J. A. Stauffer: J. Phys. A: Math. Gen. 23 (1990), p.4081.

Google Scholar

[14] C. G. Diaz, F. M. Fernández and E. A. Castro: J. Phys. A: Math. Gen. 24 (1991), p. (2061).

Google Scholar

[15] C. R. Smith: Phys. Rev. 134 (1964), p. A1235.

Google Scholar

[16] E. M. Handy, M. V. Rao, O. W. Holland, K. A. Jones, M. A. Derenge and N. Papanicolaou: J. Appl. Phys. 88 (2000), p.5630.

Google Scholar

[17] S. Rao, T. P. Chow and I. Bhat: Mater. Sci. Forum 527-529 (2006), p.597.

Google Scholar

[18] I. G. Ivanov, A. Henry and E. Janzén: Phys. Rev. B 71 (2005), p.241201(R).

Google Scholar

[19] T. N. Morgan: Phys. Rev. 139 (1965), p. A343.

Google Scholar

[20] S. M. Sze and K. K. Ng: Physics of Semiconductor Devices (John Wiley & Sons, USA 2007).

Google Scholar