Pulsed Laser Deposition of Thin Coatings: Applications on Biomaterials

Article Preview

Abstract:

We report results on Pulsed Laser Deposition (PLD) of ceramic thin films for biomedical applica-tions. The coating of metallic implants with bioceramic thin films (e.g. calcium phosphates, in particular hydroxyapatite) has been proposed as a solution for combining the mechanical properties of the metallic material with the bioactive character of the ceramic layer, leading to a better integration of the entire implant with the newly remodelled bone. Other bioceramics (as e.g. alumina) exhibit a high degree of chemical inertness under physiological conditions, excellent wear resistance, ability to be polished to a high surface finish and excellent hardness as coating. Among the different methods to obtain ceramic coatings that have been widely used so far, PLD was focusing interest due to its versatility and controllability, the aptitude to synthesize and deposit uniform films, with an accurate control of the stoichiometry and crystallinity. We investigated the micro-structural and mechanical characteristics of PLD bioceramic coatings on metal substrate. Various microscopic observations and mechanical characterisations by nanoindentation and scratch tests were used in order to connect the mechanical response to the microstructure of the coatings. Our studies revealed that the pulsed-laser deposition technique appears to be a competitive candidate in biomedical applications as an extremely versatile technology

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

530-535

Citation:

Online since:

January 2010

Export:

Price:

[1] Suchanek W., Yoshimura M., J. Mater. Res., 13 (1997), pp.94-117. Al2O3 (c).

Google Scholar

[2] Cotell C.M., Pulsed laser deposition of biocompatible thin films, in: D.B. Chrisey, G.K. Hubler (Eds. ), Pulsed Laser Deposition of Thin Films, Wiley, New York, (1994), p.549.

DOI: 10.1557/proc-252-3

Google Scholar

[3] de Groot K., Bioceramics of Calcium Phosphate, CRC Press, Boca Raton, FL, (1983).

Google Scholar

[4] Kohn DH, Ducheyne P. Materials for bone and joint replacement. In: Williams DF, editor. Medical and dental materials. Materials science and technology (a comprehensive treatment), vol. 14. Cahn RW, Haasen P, Kramer EJ, collection editors. Weinheim: VCH, (1992).

Google Scholar

[5] Hench L.L. and Wilson J., Introduction. In: L.L. Hench and J. Wilson, Editors, An introduction to bioceramics. Advanced series in ceramics vol. 1, World Scientific, Singapore (1993), pp.1-24.

DOI: 10.1142/9789814317351_0001

Google Scholar

[6] LeGeros R.Z. and LeGeros J.P., Dense hydroxyapatite. In: L.L. Hench and J. Wilson, Editors, An introduction to bioceramics. Advanced series in ceramics vol. 1, World Scientific, Singapore (1993), pp.139-180.

DOI: 10.1142/9789814317351_0009

Google Scholar

[7] Kay J.F., Bioactive surface coatings for hard tissue biomaterials. In: T. Yamamuro, L.L. Hench and J. Wilson, Editors, Handbook of bioactive ceramics volume II: calcium phosphate and hydroxylapatite ceramics, CRC Press, Boca Raton, FL (1990).

DOI: 10.1002/jbm.820250709

Google Scholar

[8] Hench L.L. and Anderson Ö., Bioactive glass coatings. In: L.L. Hench and J. Wilson, Editors, An introduction to bioceramics. Advanced series in ceramics vol. 1, World Scientific, Singapore (1993), pp.239-260.

DOI: 10.1142/9789814317351_0013

Google Scholar

[9] Elliot J.C., Structure and Chemistry of the Apatites and Others Orthophosphates, Elsevier, Amsterdam, (1994).

Google Scholar

[10] Manley M. In: Geesink R, Manely M, editors. Hydroxyapatite coatings in orthopaedic surgery. New York: Raven Press; 1993, p.1.

Google Scholar

[11] Tisdel C. L.,. Golberg V. M, Parr J. A., Bensuan J. S., Staikoff L. S., Stevenson S., J. Bone Joint Surgery - American Volume, 76(2), (1994), 159-171.

Google Scholar

[12] Chiba A., Kimura S., Raghukandan K. and Morizono Y., Mat. Sci. and Eng. A 350, (2003), p.179183.

Google Scholar

[13] Carradò A., Joulié S., Schmerber G., Faerber J., Ristoscu C., Dorcioman G., Grigorescu S., Mihailescu I., Werckmann J., Mater. Tech. 94, pp.105-109 (2006).

DOI: 10.1051/mattech:2006030

Google Scholar

[14] W.C. Oliver and G.M. Pharr, J. Mater. Res., Vol. 7, Issue 4 (1992) pp.1564-1583.

Google Scholar

[15] Socol G., Torricelli P., Bracci B., Iliescu M., Miroiu F., Bigi A., Werckmann J. and Mihailescu I.N. Biomaterials 25 13 (2004), p.2539.

DOI: 10.1016/j.biomaterials.2003.09.044

Google Scholar

[16] Grigorescu S., Carradò A., Ulhaq C., Faerber J., Ristoscu C., Dorcioman G., Axente E., Werckmann J., Mihailescu I.N., Appl. Sur. Sci., . 254(4), (2007), pp.1150-4.

DOI: 10.1016/j.apsusc.2007.09.056

Google Scholar

[17] Carradò A., Pelletier H., Sima F., Ristoscu C., Fabre A., Barrallier L., I. Mihailescu N., Key Eng. Mat. 384 (2008) pp.185-212 (ISBN 0-87849-372-7).

DOI: 10.4028/www.scientific.net/kem.384.185

Google Scholar

[18] Ahn J. H., Kwon D., Mater. Sci. Eng. A, 285 (2000) pp.172-179.

Google Scholar

[19] Natali M., Carta G., Rigato V. et al., Electrochimica Acta, 50 (2005) pp.4615-4620.

Google Scholar

[20] Pelletier H., Krier J., Mille P., Mechanics of Materials, 38 (2006) pp.1182-1198.

Google Scholar

[21] Tabor D., Proceedings of the Institute of Physics F, Physics in Technology 1 (1970) 145-179.

Google Scholar

[22] A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, N.R. Bandyopadhyay, Nanoindentation study of Microplasma Sprayed Hydroxyapatite Coating, Ceramics International (2008), doi: 10. 1016/j. ceramint. 2009. 01. 002.

DOI: 10.1016/j.ceramint.2009.01.002

Google Scholar

[23] Dinda, G.P., Shin, J., Mazumder, J., Acta Biomaterialia (2009), doi: 10. 1016/j. actbio. 2009. 01. 027.

Google Scholar

[24] Knapp J.A., Follstaedt D.M., Myers S. M., J. Appl. Phys., Vol. 79, Issue 2 (1996) pp.1116-1122.

Google Scholar

[25] Bowden F.P., Tabor D. The friction and lubrication of solids. Part I. Oxford: Clarendon Press; (1950).

Google Scholar