A New Approach to Model Heterogonous Recrystallization Kinetics Based on the Natural Inhomogeneity of Deformation

Article Preview

Abstract:

The classical JMAK equation was modified by combination with distribution density of the rate parameter k, which was deduced from a normal distribution of local strain. The modified equation is able to calculate the JMAK plots and the average Avrami exponent to characterize the entire heterogeneous recrystallization process. This new extension can successfully describe the relevant experimental observations, such as a smaller exponent than the basic JMAK theory predicts, and a decreasing slope of JMAK plots with the proceeding recrystallization. Moreover, it reveals that the Avrami exponent observed experimentally should significantly decrease with the increasing standard deviation of local strain distribution. In addition, it has a great potential to explain why most of experimentally observed values of Avrami exponents are less than 2 and why the Avrami exponent is insensitive to temperature and deformation conditions when the real standard deviation of local strain distribution in deformed metals is known.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 558-559)

Pages:

1139-1144

Citation:

Online since:

October 2007

Export:

Price:

[1] F. J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, Elsevier Science Ltd. (1995), Oxford OX5 1GB, UK, pp.16-17, 188-204.

Google Scholar

[2] L. P. Karjalainen, T. A. Maccagno, J. J. Jonas: ISIJ International, Vol. 35(1995), p.1523.

Google Scholar

[3] L. P. Karjalainen, J. Perttula: ISIJ International, Vol. 36(1996), p.729.

Google Scholar

[4] A. Laasoraoui, J. J. Jonas: Metall. Trans. A, , Vol. 22A(1991), p.151.

Google Scholar

[5] W.P. Sun, E. B. Hawbolt. ISIJ International, Vol. 37(1997), p.1000.

Google Scholar

[6] S. F. Medina, A. Quispe. ISIJ International, , Vol. 41( 2001), p.774.

Google Scholar

[7] R.A. Vandermeer, R. A. Rath: Metall. Mater. Trans. A, Vol. 20A(1989), P. 391.

Google Scholar

[8] H.W. Luo, J. Sietsma and S. van der Zwaag. ISIJ International, Vol. 44(2004), p. (1931).

Google Scholar

[9] A.D. Rollett, D.J. Srolovitz, R. D. Doherty and M. P. Anderson. Acta Metall. Vol. 37(1989), p.627.

Google Scholar

[10] V. Sessa, M. Fanfoni, M. Tomellini. Physical Review B, Vol. 54(1996), p.836.

Google Scholar

[11] R. Colas and C.M. Sellars: J. Testing and Evaluation, vol. 15(1987), pp.342-349.

Google Scholar

[12] P. H. Shipway and H.K.D. H Bhadeshia: Mater. Sci. Techno., Vol. 11(1995), p.1116.

Google Scholar

[13] A. Smith, A. Miroux, J. Sietsma, S. van der Zwaag. Steel Research Int., Vol. 77(2006), p.595.

Google Scholar

[14] D.J. Srolovitz, G.S. Grest, M.P. Anderson, A.D. Rollett. Actal Metall., Vol. 36(1988), p.2115.

Google Scholar

[15] B. Radhakrishnan, G. B. Sarma and T. Zacharia. Acta Mater., Vol. 46 (1998), p.4415.

Google Scholar

[16] J. T. Michalak, W. R. Hibbard: Trans. Am. Soc. Metals, Vol. 53(1961), p.331.

Google Scholar

[1] 1. 5.

Google Scholar

[2] 2. 5.

Google Scholar

[3] 3. 5 0 0. 01 0. 02 0. 03 0. 04 0. 05 0. 06 0. 07 0. 08 σσσσεεεε nav n =3, µε=0. 3 C1=50, 200, 400, 1000 N=4 N=5.

Google Scholar