Glass Formation Range of Mg-Based Bulk Metallic Alloys

Article Preview

Abstract:

New bulk metallic glasses (BMG) have been synthesized in the Mg-Cu-RE systems (RE= Y, Gd) with high critical diameter. In order to determine the glass forming range of these ternary systems, the calculation of the onset of driving forces (ODF) has been performed and has shown a large composition range for BMG formation. The synthesis of particular compositions in this domain has shown that all the produced alloys present a high glass forming ability (GFA) measured by DSC experiments. The ODF model, synthesized alloys by mould casting, characterization by X-ray diffraction and DSC techniques are presented.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2018-2025

Citation:

Online since:

March 2007

Export:

Price:

[1] W. Liu, W.L. Johnson, J. Mater. Res., 11 (1996) 2388.

Google Scholar

[2] K. Amiya, A. Inoue, Mater. Trans. JIM, 41 (2000) 1460.

Google Scholar

[3] S. Linderoth, N.H. Pryds, M. Ohnuma, A.S. Pedersen, M. Eldrup, N. Nishiyama, A. Inoue, Mat. Sci. Eng., A304-306 (2001) 656.

Google Scholar

[4] H. Ma, E. Ma, J. Xu, J. Mater. Res., 18 (2003) 2288.

Google Scholar

[5] Z. Kovacs, A. Castellero, A.L. Greer, J. Lendvai, M. Baricco, Mater. Sci. Eng., A387-389 (2004) 1012.

Google Scholar

[6] J.L. Soubeyroux, S. Puech, J.J. Blandin, Mat. Sci. Eng. A, RQ12 proceedings (2005).

Google Scholar

[7] A. Inoue, Acta Mater. 48 (2000) 279.

Google Scholar

[8] D.B. Miracle, Nat. Mater., 3 (2004) 697.

Google Scholar

[9] A. Zhu, G.J. Shiflet, D.B. Miracle, Scripta Materialia, 50 (2004) 987-991.

Google Scholar

[10] D. Kim, B.J. Lee, N.J. Kim, Intermetallics, 12 (2004) 1103-1107.

Google Scholar

[11] D. Kim, B. -J. Lee, N.J. Kim, Scripta Materialia, 52 (2005) 969-972.

Google Scholar

[12] COST2 - TCOST507 Light Alloys Database (Version 2. 1), provided by TCSAB, 1999/(2003).

Google Scholar

[13] E.S. Park, D.H. Kim, W.T. Kim, Appl. Phys. Lett., 86 (2005) 61907.

Google Scholar

[14] X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Intermetallics, 13 (2005) 638.

Google Scholar

[15] H. Men, W. T; Kim, D.H. Kim, J. Of Non-Cryst. Solids, 337 (2004) 29-35.

Google Scholar

[16] A. Inoue, T. Masumoto, Mat. Sci. And Eng., A173 (1993) 1.

Google Scholar

[17] N.H. Pryds, M. Eldrup, M. Ohnuma, A.S. Pedersen, J. Hattel, S. Linderoth, Mat. Trans., JIM, 41 (2000) 1435.

DOI: 10.2320/matertrans1989.41.1435

Google Scholar

[18] Z.P. Lu, C.T. Liu, Phys. Rev. Lett., 91 (2003) 115505.

Google Scholar

[19] H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma, J. Mater. Res., 20 (2005) 2252.

Google Scholar

[20] E.S. Park, D.H. Kim, J. Mater. Res., 20 (2005).

Google Scholar

[19] 58, 5 30, 5 11 429 498 69 735 782 47 0, 5837 0, 4112 9.

Google Scholar

[6] 58, 5 30, 5 11 422 496 74 729 762 33 0, 5789 0, 4189 9.

Google Scholar

[19] 58 30 12 426 494 68 730 771 41 0, 5836 0, 4127 9 51 34 15 439 497 58 732 781 49 0, 5997 0, 4074 5 45 37 18 444 499 55 732 829 97 0, 6066 0, 3920 5 At. % Mg At. % Cu At. % Gd Tg (K) Tx (K) ΔΤ (Κ) Tmi (K) Tmf (K) ΔTm (K) Trg γ Dc (mm) Reference 72 20 8 411 454 43 673 745 72 0, 6107 0, 3927 6 65 25 10 413 473 60 695 739 44 0, 5942 0, 4106 7 65 25 10 423 484 61 679 740 61 0, 6230 0, 4162 8.

Google Scholar

[20] 58, 5 30, 5 11 426 490 64 709 753 44 0, 6008 0, 4156 9.

Google Scholar

[6] 58 30 12 424 485 61 705 755 50 0, 6014 0, 4114 9 51 34 15 432 494 62 711 747 36 0, 6076 0, 4190 6 45 37 18 441 495 54 705 785 80 0, 6255 0, 4038 5 Figure 2: Projected onset driving forces for the Mg-Cu-Y ternary system. xCu and xMg are respectively the mole fraction of copper and magnesium. Iso-ODF" lines are displayed gradually from high values (red) to low values (dark blue). The line is a guide for the eye for the region of ODF, s minima. Black dots are the experimental points of this study. Red dots (empty circles) are the points for Mg65Cu25Y10 and Mg60Cu30Y10, compounds known as good glass formers. Figure 3: X-ray diffraction patterns of the MgxCuxGdz BMG alloys obtained at different sections of the conical samples. Fig. 4a: DSC traces of the MgxCuyYz BMG alloys obtained at 10K/min. Fig. 4b: DSC traces of the MgxCuyGdz BMG alloys obtained at 10K/min. Fig. 5: γ parameter and critical diameter as a function of gadolinium content. The lines are a guide for the eyes. Full circles are experimental points for γ of this study; triangles are critical diameters; the circle point is from.

Google Scholar