The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications

Article Preview

Abstract:

It is difficult to meet all the different material and economical requirements posed to a MEMS structural layer that can be integrated with the electronics on the same substrate using a single layer process. Therefore a multilayer process, which uses a combination of a CVD crystallization layer and a high-growth rate PECVD bulk layer was developed. High-quality films with excellent electrical and mechanical properties can be obtained at low temperature (#450°C) and high deposition rates (~100 nm/min). Fine-tuning of the stress gradient is accomplished by the use of a top stress compensation layer, whose optimal thickness was estimated from an evaluation of the stress gradient profile over thickness. These layers have been used for processing a 10 µm thick poly-SiGe gyroscope on top of a standard 0.35 µm CMOS process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 492-493)

Pages:

255-260

Citation:

Online since:

August 2005

Authors:

Export:

Price:

[1] M. Madou: Fundamentals of Microfabrication (New York: CRC Press, 1997).

Google Scholar

[2] A. Witvrouw, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, K. Baert: Proc. SPIE Micromachining and Microfabrication Process Technology VI; Sept. 2000, Vol. 4174 (2000), p.130.

DOI: 10.1117/12.396423

Google Scholar

[3] J. Smith, S. Montague, J. Sniegowski, J. Murray, and P. McWhorter: Proc. IEDM '95 (1995), p.609.

Google Scholar

[4] K. Funk et al: Proc. IEEE MEMS '99 (1999), p.57.

Google Scholar

[5] W. Kuehnel and S. Sherman: Sensors and Actuators A Vol. 45 (1) (1994), p.7.

Google Scholar

[6] X. Zhang, T. Zhang, M. Wong and Y. Zohar: Journal of Microelectromechanical Systems Vol. 7 (4) (1998), p.356.

Google Scholar

[7] J. Singh, S. Chandra and A. Chand, Sensors and Actuators A (physical), A77 (2), pp.133-8, (1999).

Google Scholar

[8] T. J. King et al: IEDM proceedings'02 (2002), p.199.

Google Scholar

[9] A.E. Franke et al.: Solid State Sensor and Actuator Workshop, June 4-8 (2000), p.18.

Google Scholar

[10] A. E. Franke et al., Journal of microelectromechanical systems, 12 (2), p.160, (2003).

Google Scholar

[11] S. Sedky et al.: Sensors and Actuators A Vol. 97-98 (2002), p.503.

Google Scholar

[12] S. Sedky et al.: Journal of Materials Research Vol. 16 (9) (2001), p.2607.

Google Scholar

[13] S. Sedky et al.: Proc. of the 11th International conference on solid state Sensors and Actuators Transducers '01 (2001), p.988.

Google Scholar

[14] A. Mehta et al.: Proc. IEEE MEMS (2004), p.721.

Google Scholar

[15] B. Abeles et al.: Physical review Vol. 125 (1) (1962), p.44.

Google Scholar

[16] P. Van Gerwen et al.: Sensors and Actuators A Vol. 53 (1996) , p.325.

Google Scholar

[17] S. Sedky et al.: Sensors and Actuators A Vol. 66 (1998), p.193.

Google Scholar

[18] S. Sedky et al.: IEEE Trans El. Dev. Vol. 46 (4) (1999), p.675.

Google Scholar

[19] A.E. Franke et al.: Proc. IEEE MEMS '99 (1999), p.630.

Google Scholar

[20] A. Witvrouw et al., to be published in special issue of Microelectronic Engineering (Proc. MAM 2004).

Google Scholar

[21] A. Witvrouw et al.: Microsystem Technologies, Vol. 6 (5) (2000), p.192.

Google Scholar

[22] A. Witvrouw et al.: Proc. MRS Vol. 782 (2004), p.25.

Google Scholar

[23] S. Sedky et al.: IEEE Transactions on Electron Devices 48 (2) (2001), p.377.

Google Scholar

[24] L.J. Hornbeck, Proc. SPIE 3013 (1997), p.27.

Google Scholar

[25] C. Rusu et al.: J. MEMS Vol. 12 (6) (2003), p.816.

Google Scholar

[26] H.C. Lin et al.: J. Electrochem. Soc. Vol. 141 (9) (1994), p.2559.

Google Scholar

[27] J. Yang et al.: J. Microelectromech. Syst. Vol. 9(4) (2000), p.485.

Google Scholar

[28] A. Witvrouw , Ph. Pieters, R. Borzi: accepted for publication in SST (2004).

Google Scholar

[29] A. Molfese, A. Mehta and A. Witvrouw: submitted to Sensors and Actuators.

Google Scholar