Review of Oil Palm Mesocarp Fiber (OPMF) Mechanical and Chemical Properties Improvement to Develop Environment Friendly Material

Article Preview

Abstract:

Malaysia is one of the largest producers of palm oil which produces vast amounts of bio waste. Natural fiber from palm oil has interesting properties such as low cost, light weight and biodegradable that can replace synthetic fiber. Some of the oil palm bio waste residues are oil palm mesocarp fiber (OPMF), palm kernel shells and empty fruit bunches. Mesocarp fiber can be utilised as bio-composites material with proper treatment techniques to improve its mechanical and chemical properties for various potential application. This review is attempted to address critical discussion on a number of approaches in improving OPMF mechanical and chemical properties. Potential application of OPMF in various application are identified as research gap to develop environment friendly materials in future.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

102-108

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] Then, Y. Y., Ibrahim, N. A., Zainuddin, N., Chieng, B. W., Ariffin, H., & Yunus, W. M. Z. W. (2015). Effect of 3-Aminopropyltrimethoxysilane on chemically modified oil palm Mesocarp fiber/poly (butylene succinate) Biocomposite. BioResources, 10(2), 3577-3601.

DOI: 10.15376/biores.10.2.3577-3601

Google Scholar

[2] Nordin, N. I. A. A., Ariffin, H., Hassan, M. A., Shirai, Y., Ando, Y., Ibrahim, N. A., & Yunus, W. M. Z. W. (2017). Superheated steam treatment of oil palm mesocarp fiber improved the properties of fiber-polypropylene biocomposite. BioResources, 12(1), 68-81.

DOI: 10.15376/biores.12.1.68-81

Google Scholar

[3] Norkhairunnisa, M., & Majid, D. L. (2016). A Review on Thermal Performance of Hybrid Natural Fiber/Nanoclay Polymer Composites. In Nanoclay Reinforced Polymer Composites (pp.151-174). Springer, Singapore.

DOI: 10.1007/978-981-10-0950-1_7

Google Scholar

[4] Hambali, E., & Rivai, M. (2017, May). The potential of palm oil waste biomass in Indonesia in 2020 and 2030. In IOP Conference Series: Earth and Environmental Science (Vol. 65, No. 1, p.012050). IOP Publishing.

DOI: 10.1088/1755-1315/65/1/012050

Google Scholar

[5] Awalludin, M. F., Sulaiman, O., Hashim, R., & Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews, 50, 1469-1484.

DOI: 10.1016/j.rser.2015.05.085

Google Scholar

[6] Faizal, H. M., Jusoh, M. A. M., Rahman, M. R. A., Syahrullail, S., & Latiff, Z. A. (2016). Torrefaction of palm biomass briquettes at different temperature. Jurnal Teknologi, 78(9-2).

DOI: 10.11113/jt.v78.9656

Google Scholar

[7] Tenorio, C., Moya, R., & Valaert, J. (2016). Characterisation of pellets made from oil palm residues in Costa Rica. J. Oil Palm Res, 28, 198-210.

DOI: 10.21894/jopr.2016.2802.08

Google Scholar

[8] Deba, M., Zain, A., & Salleh, N. A. M. (2006). Biosugar production from oil palm mesocarp fiber (OPMF) using Viscozyme. ARPN Journal of Engineering and Applied Sciences, 12(21), 6225-6237.

Google Scholar

[9] Nordin, N. A., Sulaiman, O., Hashim, R., & Kassim, M. H. M. (2017). Oil Palm Frond Waste for the Production of Cellulose Nanocrystals. Journal of Physical Science, 28(2).

DOI: 10.21315/jps2017.28.2.8

Google Scholar

[10] Qureshi, S. S., Nizamuddin, S., Baloch, H. A., Siddiqui, M. T. H., Mubarak, N. M., & Griffin, G. J. (2019). An overview of OPS from oil palm industry as feedstock for bio-oil production. Biomass Conversion and Biorefinery, 1-15.

DOI: 10.1007/s13399-019-00381-w

Google Scholar

[11] Rizal, N. F. A. A., Ibrahim, M. F., Zakaria, M. R., Abd-Aziz, S., Yee, P. L., & Hassan, M. A. (2018). Pre-treatment of oil palm biomass for fermentable sugars production. Molecules, 23(6), 1381.

DOI: 10.3390/molecules23061381

Google Scholar

[12] Manurung, H., Silalahi, J., Siahaan, D., & Julianti, E. (2017). AJAB. Asian J Agri & Biol, 5(4), 337-345.

Google Scholar

[13] Johnson, R., Prabu, V. A., Amuthakkannan, P., & Prasath, K. A. (2017). A Review on Biocomposites and Bioresin Based Composites for Potential Industrial Applications. Reviews on Advanced Materials Science, 49(1).

Google Scholar

[14] Birnin-Yauri, A. U., Ibrahim, N. A., Zainuddin, N., Abdan, K., Then, Y. Y., & Chieng, B. W. (2016). Enhancement of the mechanical properties and dimensional stability of oil palm empty fruit bunch-kenaf core and oil palm mesocarp-kenaf core hybrid fiber-reinforced poly (lactic acid) biocomposites by borax decahydrate modification of fibers. BioResources, 11(2), 4865-4884.

DOI: 10.15376/biores.11.2.4865-4884

Google Scholar

[15] Warid, M. N. M., Ariffin, H., Hassan, M. A., & Shirai, Y. (2016). Optimization of superheated steam treatment to improve surface modification of oil palm biomass fiber. BioResources, 11(3), 5780-5796.

DOI: 10.15376/biores.11.3.5780-5796

Google Scholar

[16] Then, Y. Y., Azowa, I. N., Zainuddin, N., Chieng, B. W., Eng, C. C., Ariffin, H., & Wan Md Zin, W. Y. (2016). Enhancement of Tensile Properties of Surface Treated Oil Palm Mesocarp Fiber/Poly (Butylene Succinate) Biocomposite by (3-Aminopropyl) Trimethoxysilane. In Materials Science Forum (Vol. 846, pp.665-672). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/msf.846.665

Google Scholar

[17] Azammi, A. N., Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Atikah, M. S. N., Asrofi, M., & Atiqah, A. (2020). Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In Interfaces in particle and fibre reinforced composites (pp.29-93). Woodhead Publishing.

DOI: 10.1016/b978-0-08-102665-6.00003-0

Google Scholar

[18] Then, Y. Y., Azowa, I. N., Zainuddin, N., Chieng, B. W., Eng, C. C., Ariffin, H., & Wan Md Zin, W. Y. (2016). Enhancement of Tensile Properties of Surface Treated Oil Palm Mesocarp Fiber/Poly (Butylene Succinate) Biocomposite by (3-Aminopropyl) Trimethoxysilane. In Materials Science Forum (Vol. 846, pp.665-672). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/msf.846.665

Google Scholar

[19] Singh, J. I. P., Dhawan, V., Singh, S., & Jangid, K. (2017). Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Materials today: proceedings, 4(2), 2793-2799.

DOI: 10.1016/j.matpr.2017.02.158

Google Scholar

[20] Megashah, L. N., Ariffin, H., Zakaria, M. R., & Ando, Y. (2018, June). Characteristics of cellulose from oil palm mesocarp fibres extracted by multi-step pretreatment methods. In IOP Conference Series: Materials Science and Engineering (Vol. 368, No. 1, p.012001). IOP Publishing.

DOI: 10.1088/1757-899x/368/1/012001

Google Scholar

[21] Campos, A., Neto, A. S., Rodrigues, V. B., Luchesi, B. R., Mattoso, L. H. C., & Marconcini, J. M. (2018). Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Industrial Crops and Products, 124, 149-154.

DOI: 10.1016/j.indcrop.2018.07.075

Google Scholar

[22] Olusunmade, O. F., Adetan, D. A., & Ogunnigbo, C. O. (2016). A study on the mechanical properties of oil palm mesocarp fibre-reinforced thermoplastic. Journal of Composites, (2016).

DOI: 10.1155/2016/3137243

Google Scholar

[23] Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: An overview. Natural Resources, 7(3), 108-114.

DOI: 10.4236/nr.2016.73011

Google Scholar

[24] Karuppuchamy, S., Andou, Y., Nishida, H., Nordin, N. I. A. A., Ariffin, H., Hassan, M. A., & Shirai, Y. (2015). Superheated steam treated oil palm frond fibers and their application in plastic composites. Advanced Science, Engineering and Medicine, 7(2), 120-125.

DOI: 10.1166/asem.2015.1659

Google Scholar

[25] Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Atikah, M. S. N., Atiqah, A., Ansari, M. N. M., & Norrrahim, M. N. F. (2019). Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. Nanocrystalline materials, 3-32.

DOI: 10.5772/intechopen.87001

Google Scholar

[26] Sharip, N. S., Ariffin, H., Hassan, M. A., Nishida, H., & Shirai, Y. (2016). Characterization and application of bioactive compounds in oil palm mesocarp fiber superheated steam condensate as an antifungal agent. RSC advances, 6(88), 84672-84683.

DOI: 10.1039/c6ra13292h

Google Scholar

[27] Mohanty, A. K., Vivekanandhan, S., Pin, J. M., & Misra, M. (2018). Composites from renewable and sustainable resources: Challenges and innovations. Science, 362(6414), 536-542.

DOI: 10.1126/science.aat9072

Google Scholar

[28] Temmink, R., Baghaei, B., & Skrifvars, M. (2018). Development of biocomposites from denim waste and thermoset bio-resins for structural applications. Composites Part A: Applied Science and Manufacturing, 106, 59-69.

DOI: 10.1016/j.compositesa.2017.12.011

Google Scholar

[29] Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.

DOI: 10.1016/j.compositesa.2015.06.007

Google Scholar

[30] Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 54, 533-549.

DOI: 10.1016/j.rser.2015.10.037

Google Scholar

[31] Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.

DOI: 10.1016/j.compositesa.2015.06.007

Google Scholar

[32] Sánchez-Safont, E. L., Aldureid, A., Lagarón, J. M., Gámez-Pérez, J., & Cabedo, L. (2018). Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Composites Part B: Engineering, 145, 215-225.

DOI: 10.1016/j.compositesb.2018.03.037

Google Scholar

[33] Yuryev, Y., Mohanty, A. K., & Misra, M. (2017). Novel biocomposites from biobased PC/PLA blend matrix system for durable applications. Composites Part B: Engineering, 130, 158-166.

DOI: 10.1016/j.compositesb.2017.07.030

Google Scholar

[34] Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites: An overview. Natural Resources, 7(3), 108-114.

DOI: 10.4236/nr.2016.73011

Google Scholar

[35] Mohammed, L., Ansari, M. N., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, (2015).

DOI: 10.1155/2015/243947

Google Scholar

[36] Dungani, R., Aditiawati, P., Aprilia, S., Yuniarti, K., Karliati, T., Suwandhi, I., & Sumardi, I. (2018). Biomaterial from oil palm waste: properties, characterization and applications. Palm Oil, 31.

DOI: 10.5772/intechopen.76412

Google Scholar