Towards the Possibility of Additive Manufacturing of XNA-Based Devices Using Molecular Engineering Principles

Article Preview

Abstract:

This paper considers a novel approach for integration between molecular engineering of XNA-based structures and additive manufacturing of XNA-based devices based on multiparametric characterization of XNAs by different functional descriptors (such as physical properties of XNA-based materials and precursors of XNA-based molecular devices) and the possibility of thermal or electron-beam processing as a prerequisite of the industrial technical process development for such device implementation. This can be performed in the framework of additive manufacturing by connecting the output of the XNA synthesizer or nucleic acid synthesizer with 3D-printer nozzles in such a way that oligos / AGCTX products are supported into the nozzles separately.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1037)

Pages:

84-104

Citation:

Online since:

July 2021

Export:

Price:

* - Corresponding Author

[1] S. Cansiz, L. Zhang, C. Wu, Y. Wu, I.T. Teng, W. Hou, Y. Wang, S. Wan, R. Cai, C. Jin, Q. Liu, W. Tan, DNA aptamer based nanodrugs: molecular engineering for efficiency. Chemistry–An Asian Journal 10(10) (2015) 2084-2094.

DOI: 10.1002/asia.201500434

Google Scholar

[2] D. Han, J. Huang, Z. Zhu, Q. Yuan, M. You, Y. Chen, W. Tan, Molecular engineering of photoresponsive three-dimensional DNA nanostructures. Chemical Communications 47(16) (2011) 4670-4672.

DOI: 10.1039/c1cc10893j

Google Scholar

[3] A. J. Heron, Molecular Engineering DNA and RNA for Nanopore Sequencing. in: D. Branton, D. Deamer (Eds.), Nanopore Sequencing: An Introduction, World Scientific, Singapore, 2019, pp.107-146.

DOI: 10.1142/9789813270619_0008

Google Scholar

[4] L.I. Patrushev, Artificial genetic systems, Vol. 1, Nauka (Science), Moscow, 2004. [Russian].

Google Scholar

[5] T. Bose, V.A. Kumar, Simple molecular engineering of glycol nucleic acid: Progression from self-pairing to cross-pairing with cDNA and RNA. Bioorganic & Medicinal Chemistry 22(21) (2014) 6227-6232.

DOI: 10.1016/j.bmc.2014.08.022

Google Scholar

[6] J. Li, A.A. Green, H. Yan, C. Fan, Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nature Chemistry 9(11) (2017) 1056.

DOI: 10.1038/nchem.2852

Google Scholar

[7] J. Wu, Molecular engineering of novel nucleotide analogues for DNA sequencing by synthesis. Columbia University (2008).

Google Scholar

[8] K. Wang, Z. Tang, C.J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C.D. Medley, Z. Cao, J. Li, P. Colon, H. Lin, W. Tan, Molecular engineering of DNA: molecular beacons. Angewandte Chemie International Edition 48(5) (2009) 856-870.

DOI: 10.1002/anie.200800370

Google Scholar

[9] J. Zhang, T. Lan, Y. Lu, Molecular engineering of functional nucleic acid nanomaterials toward in vivo applications. Advanced healthcare materials 8(6) (2019) 1801158.

DOI: 10.1002/adhm.201801158

Google Scholar

[10] H. Kang, Molecular Engineering of Nucleic Acid: Towards Functional and Smart Materials. Diss University of Florida (2009).

Google Scholar

[11] M. Eigen, W. Gardiner, Evolutionary molecular engineering based on RNA replication. Pure and Applied Chemistry 56(8) (1984) 967-978.

DOI: 10.1351/pac198456080967

Google Scholar

[12] S.I. Nakano, N. Sugimoto, Central dogma for a molecular design based on DNA: DNB (databasing / designable nanobio)→ ENB (engineering nanobio)→ FNB (functional nanobio). Chemistry Letters 34(9) (2005) 1206-1211.

DOI: 10.1246/cl.2005.1206

Google Scholar

[13] O. Doluca, J.M. Withers, V.V. Filichev, Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chemical reviews 113(5) (2013) 3044-3083.

DOI: 10.1021/cr300225q

Google Scholar

[14] F.Y. Chen, S. Park, H. Otomo, S. Sakashita, H. Sugiyama, H. Investigation of BZ transitions with DNA oligonucleotides containing 8-methylguanine. Artificial DNA: PNA & XNA 5(1) (2014) e28226.

DOI: 10.4161/adna.28226

Google Scholar

[15] N.A. Kolganova, A.M. Varizhuk, R.A. Novikov, V.L. Florentiev, G.E. Pozmogova, O.F. Borisova, A.K. Shchyolkina, I.P. Smirnov, D.N. Kaluzhny, E.N. Timofeev, Anomeric DNA quadruplexes: Modified thrombin aptamers.  Artificial DNA: PNA & XNA 5(2) (2014) e28422.

DOI: 10.4161/adna.28422

Google Scholar

[16] F.A. Rogers, J.A. Lloyd, M.K. Tiwari, Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases. Artificial DNA: PNA & XNA 5(1) (2014) e27792.

DOI: 10.4161/adna.27792

Google Scholar

[17] H.S. Mohammed, J.O. Delos Santos, B. Armitage, Noncovalent binding and fluorogenic response of cyanine dyes to DNA homoquadruplex and PNA-DNA heteroquadruplex structures. Artificial DNA: PNA & XNA 2(2) (2011) 43-49.

DOI: 10.4161/adna.2.2.16339

Google Scholar

[18] A.M. Doweyko, W.B. Mattes, An application of 3D-QSAR to the analysis of the sequence specificity of DNA alkylation by uracil mustard. Biochemistry, 31(39) (1992) 9388-9392.

DOI: 10.1021/bi00154a009

Google Scholar

[19] B. Llorente, F. Leclerc, R. Cedergren, Using SAR and QSAR analysis to model the activity and structure of the quinolone—DNA complex. Bioorganic & medicinal chemistry 4(1) (1996) 61-71.

DOI: 10.1016/0968-0896(96)83749-7

Google Scholar

[20] P. Khadika, S. Sharma, V. Sharma, S Joshi, I. Lukovits, M. Kaveeshwar, A QSAR study of the effect of benzohydroxamic acids on DNA synthesis. Bulletin des Sociétés Chimiques Belges 106(12) (1997) 767-772.

Google Scholar

[21] S. Banerjee, A.K. Saikia, Ligand based pharmacophore modeling and QSAR analysis of heterocyclic diamidine derivatives as anti-parasitic dna minor groove binders. Exploratory Animal and Medical Research 3(2) (2013) 102-116.

Google Scholar

[22] D.W. Boerth, E. Eder, J.R. Stanks, P. Wanek, Formation and QSAR analysis of DNA adducts with pesticides. Chemical Research in Toxicology 18(12) 2005 1974-1975.

Google Scholar

[23] P. Szatkowska-Wandas, M. Koba, A. Kuchcicka, S. Kurek, E. Daghir-Wojtkowiak, T. Baczek, The application of connected QSRR and QSAR strategies to predict the physicochemical interaction of acridinone derivatives with DNA. Combinatorial Chemistry & High Throughput Screening 17(10) (2014) 820-826.

DOI: 10.2174/1386207317666141112120743

Google Scholar

[24] S.V. Sharma, L. Venkateshwarlu, B. Suresh, QSAR studies on substituted bis-(acridine-4-carboxamides) as potent DNA intercalators. Indian Journal of Pharmaceutical Sciences 65(6) (2003) 628.

Google Scholar

[25] M. Koba, T. Bączek, Physicochemical interaction of antitumor acridinone derivatives with DNA in view of QSAR studies. Medicinal Chemistry Research 20(8) (2011) 1385-1393.

DOI: 10.1007/s00044-010-9487-y

Google Scholar

[26] R. Kiwamoto, A. Spenkelink, I.M. Rietjens, A. Punt, An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α, β-unsaturated aldehydes. Toxicology and Applied Pharmacology 282(1) (2015) 108-117.

DOI: 10.1016/j.taap.2014.10.014

Google Scholar

[27] P. Szatkowska-Wandas, M. Koba, Prediction of acridinones' ability to interstrand DNA crosslinks formation using connected QSRR and QSAR analysis. Letters in Drug Design & Discovery 13(5) (2016) 387-394.

DOI: 10.2174/1570180812666151003001801

Google Scholar

[28] A.G. Olsen, O. Dahl, A.B. Petersen, J. Nielsen, P.E. Nielsen, A novel pseudo-complementary PNA GC base pair. Artificial DNA: PNA & XNA 2(1) (2011) 32-36.

DOI: 10.4161/adna.2.1.15554

Google Scholar

[29] A. Gourishankar, K.N. Ganesh, (α, α-dimethyl) glycyl (dmg) PNAs: Achiral PNA analogs that form stronger hybrids with cDNA relative to isosequential RNA. Artificial DNA: PNA & XNA 3(1) (2012) 5-13.

DOI: 10.4161/adna.19185

Google Scholar

[30] T. Joshi, M. Patra, L. Spiccia, G. Gasser, Di-heterometalation of thiol-functionalized peptide nucleic acids. Artificial DNA: PNA & XNA 4(1) (2013) 11-18.

DOI: 10.4161/adna.24019

Google Scholar

[31] T. Højland, R.N. Veedu, B. Vester, J. Wengel, Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides. Artificial DNA: PNA & XNA 3(1) (2012) 14-21.

DOI: 10.4161/adna.19272

Google Scholar

[32] K. Robeyns, P. Herdewijn, L. Van Meervelt, Direct observation of two cyclohexenyl (CeNA) ring conformations in duplex DNA. Artificial DNA: PNA & XNA 1(1) (2010) 2-8.

DOI: 10.4161/adna.1.1.10952

Google Scholar

[33] G. Devi, K.N. Ganesh, 1, 4-linked 1, 2, 3-Triazole des-peptidic analogues of PNA (TzNA): Synthesis of TzNA oligomers by click, reaction on solid phase and stabilization of derived triplexes with DNA. Artificial DNA, PNA & XNA 1(2) (2010) 68.

DOI: 10.4161/adna.1.2.13185

Google Scholar

[34] Z. Zhang, J. Liu, Molecular Imprinting with Functional DNA. Small, 15(26) (2019) 1805246.

Google Scholar

[35] D.A. Spivak, K.J. Shea, Investigation into the scope and limitations of molecular imprinting with DNA molecules. Analytica Chimica Acta 435(1) (2001) 65-74.

DOI: 10.1016/s0003-2670(00)01333-7

Google Scholar

[36] C. Tian, H. Kim, W. Sun, Y. Kim, P. Yin, H. Liu, DNA nanostructures-mediated molecular imprinting lithography. ACS nano 11(1) (2017) 227-238.

DOI: 10.1021/acsnano.6b04777

Google Scholar

[37] H. Brahmbhatt, A. Poma, H.M. Pendergraff, J.K. Watts, N.W. Turner, Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs). Biomaterials science 4(2) (2016) 281-287.

DOI: 10.1039/c5bm00341e

Google Scholar

[38] A. Kuzyk, K.T. Laitinen, P. Törmä, DNA origami as a nanoscale template for protein assembly. Nanotechnology 20(23) (2009) 235305.

DOI: 10.1088/0957-4484/20/23/235305

Google Scholar

[39] G. Bischoff, R. Bischoff, S. Hoffmann, Porphyrin self-assembly as template for RNA? Journal of Porphyrins and Phthalocyanines 5(9) (2001) 691-701.

DOI: 10.1002/jpp.381.abs

Google Scholar

[40] B. Wu, A. Peisley, D. Tetrault, Z. Li, E.H. Egelman, K.E. Magor, T. Walz, P.A. Penczek, S. Hur, Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I.  Molecular cell 55(4) (2014) 511-523.

DOI: 10.1016/j.molcel.2014.06.010

Google Scholar

[41] H. Liang, T.E. Angelini, J. Ho, P.V. Braun, G.C. Wong, Molecular Imprinting of Biomineralized CdS Nanostructures: Crystallographic Control Using Self-Assembled DNA− Membrane Templates. Journal of the American Chemical Society 125(39)(2003) 11786-11787.

DOI: 10.1021/ja036529o

Google Scholar

[42] V. Kulikov, N.A. Johnson, A.J. Surman, M. Hutin, S.M. Kelly, M. Hezwani, D.L. Long, G. Meyer, L. Cronin, Spontaneous Assembly of an Organic–Inorganic Nucleic Acid Z-DNA Double-Helix Structure. Angewandte Chemie International Edition 56(4) (2017) 1141-1145.

DOI: 10.1002/anie.201606658

Google Scholar

[43] J.S. Lee, H. Kim, C. Jo, J. Jeong, J. Ko, S. Han, M.S. Lee, H.-Y. Lee, J.W. Han, J. Lee, J.B. Lee, Enzyme-Driven Hasselback-Like DNA-Based Inorganic Superstructures.  Advanced Functional Materials 27(45) (2017) 1704213.

DOI: 10.1002/adfm.201704213

Google Scholar

[44] S.F. Ralph, Quadruplex DNA: a promising drug target for the medicinal inorganic chemist. Current topics in medicinal chemistry 11(5) (2011) 572-590.

DOI: 10.2174/156802611794785208

Google Scholar

[45] J.L. Czlapinski, T.L. Sheppard, Nucleic acid template-directed assembly of metallosalen− DNA conjugates. Journal of the American Chemical Society 123(35) (2001) 8618-8619.

DOI: 10.1021/ja0162212

Google Scholar

[46] Y. Ma, X. Yang, Y. Wei, Q. Yuan, Applications of DNA nanotechnology in synthesis and assembly of inorganic nanomaterials. Chinese Journal of Chemistry 34(3) (2016) 291-298.

DOI: 10.1002/cjoc.201500835

Google Scholar

[47] X. Xu, P. Winterwerber, D. Ng, Y. Wu, DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Topics in Current Chemistry 378(2) (2020) 1-25.

DOI: 10.1007/s41061-020-0292-x

Google Scholar

[48] F. Wang, J. Wang, Y. Zhai, G. Li, D. Li, S. Dong, Layer-by-layer assembly of biologically inert inorganic ions/DNA multilayer films for tunable DNA release by chelation. Journal of Controlled Release 132(1) (2008) 65-73.

DOI: 10.1016/j.jconrel.2008.08.016

Google Scholar

[49] G.B. Khomutov, M.N. Antipina, A.N. Sergeev-Cherenkov, A.A. Rakhnyanskaya, M. Artemyev, D. Kisiel, R.V. Gainutdinov, A.L. Tolstikhina, V. V. Kislov, Organized planar nanostructures via interfacial self-assembly and DNA templating. International Journal of Nanoscience 3 (2004) 65-74.

DOI: 10.1142/s0219581x04001821

Google Scholar

[50] L.A. Stearns, R. Chhabra, J. Sharma, Y. Liu, W.T. Petuskey, H. Yan, J.C. Chaput, Template-directed nucleation and growth of inorganic nanoparticles on DNA scaffolds.  Angewandte Chemie 121(45) (2009) 8646-8648.

DOI: 10.1002/ange.200903319

Google Scholar

[51] L.Q. Deng, H.X. Yuan, J.M. Ouyang, Growth of Nano-inorganic Material Modulated by DNA Templates. Journal of Synthetic Crystals 35(1) (2006) 188.

Google Scholar

[52] S. Pu, A. Zinchenko, S. Murata, Facile control of DNA-templated inorganic nanoshell size.  Journal of Nanoscience and Nanotechnology 12(1) (2012) 635-641.

DOI: 10.1166/jnn.2012.5383

Google Scholar

[53] S. Pu, A. Zinchenko, S. Murata, DNA-assisted double-templating, approach for the construction of hollow meshed inorganic nanoshells. Langmuir 27(8) (2011) 5009-5013.

DOI: 10.1021/la104984x

Google Scholar

[54] S.D. Senanayake, H. Idriss, Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2 (001) single surfaces. Proceedings of the National Academy of Sciences 103(5) (2006) 1194-1198.

DOI: 10.1073/pnas.0505768103

Google Scholar

[55] G. Costanzo, R. Saladino, C. Crestini, F. Ciciriello, E. Di Mauro, Nucleoside phosphorylation by phosphate minerals. Journal of Biological Chemistry 282(23) (2007) 16729-16735.

DOI: 10.1074/jbc.m611346200

Google Scholar

[56] I.R. Siddiqui, V. Srivastava, P.K. Singh, Mineral supported facile synthesis of novel 4-hydroxybenzoxazin-2-thione N-nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 27(8) (2008) 992-1000.

DOI: 10.1080/15257770802258042

Google Scholar

[57] H.J. Cleaves, C.M. Jonsson, C.L. Jonsson, D.A. Sverjensky, R.M. Hazen, Adsorption of nucleic acid components on rutile (TiO2) surfaces. Astrobiology 10(3) (2010) 311-323.

DOI: 10.1089/ast.2009.0397

Google Scholar

[58] R. Saladino, E. Carota, G. Botta, M. Kapralov, G.N. Timoshenko, A.Y. Rozanov,. E. Krasavin, E. Di Mauro, Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proceedings of the National Academy of Sciences  112(21) (2015) E2746-E2755.

DOI: 10.1073/pnas.1422225112

Google Scholar

[59] J.B. Swadling, J.L. Suter, H.C. Greenwell, P.V. Coveney, Influence of surface chemistry and charge on mineral–RNA interactions. Langmuir 29(5) (2013) 1573-1583.

DOI: 10.1021/la303352g

Google Scholar

[60] M. Gull, M.A. Mojica, F.M. Fernández, D.A. Gaul, T.M. Orlando, C.L. Liotta, M.A. Pasek, Nucleoside phosphorylation by the mineral schreibersite. Scientific reports 5(1) (2015) 1-6.

DOI: 10.1038/srep17198

Google Scholar

[61] R.J. Gillams, T.Z. Jia, Mineral surface-templated self-assembling systems: Case studies from nanoscience and surface science towards origins of life research. Life (2018) 8(2), 10.

DOI: 10.3390/life8020010

Google Scholar

[62] A.G. Cairns-Smith, The origin of life and the nature of the primitive gene. Journal of Theoretical Biology 10(1) (1966) 53-88.

DOI: 10.1016/0022-5193(66)90178-0

Google Scholar

[63] V.A. Otroshchenko, N.V. Vasilyeva The role of mineral surfaces in the origin of life. Origins of life 8(1) (1977) 25-31.

DOI: 10.1007/bf00930936

Google Scholar

[64] N. Bone, Book Review: A.G. Cairns-Smith, Genetic Takeover and the Mineral Origins of Life.  Journal of the British Astronomical Association 93 (1983) 98.

Google Scholar

[65] T.F. Strigunkova, G.A. Lavrentiev, V.A. Otroshchenko, Abiogenic synthesis of oligonucleotides on kaolinite under the action of ultraviolet radiation. Journal of Molecular Evolution 23(4) (1986) 290-293.

DOI: 10.1007/bf02100636

Google Scholar

[66] A.G. Cairns-Smith, Sketches for a mineral genetic material. Elements 1(3) (2005) 157-161.

Google Scholar

[67] S.J. Sowerby, P.A. Stockwell, W.M. Heckl, G.B. Petersen, Self-programmable, self-assembling two-dimensional genetic matter. Origins of Life and Evolution of the Biosphere 30(1) (2000) 81-99.

DOI: 10.1023/a:1006616725062

Google Scholar

[68] M.M. Hanczyc, S.S. Mansy, J.W. Szostak, Mineral surface directed membrane assembly.  Origins of Life and Evolution of Biospheres 37(1) (2007) 67-82.

DOI: 10.1007/s11084-006-9018-5

Google Scholar

[69] H.J. Cleaves II, A.M. Scott, F.C. Hill, J. Leszczynski, N. Sahai, R. Hazen, Mineral–organic interfacial processes: potential roles in the origins of life. Chemical Society Reviews 41(16), (2012) 5502-5525.

DOI: 10.1039/c2cs35112a

Google Scholar

[70] V. Erastova, M.T. Degiacomi, D.G. Fraser, H.C. Greenwell, Mineral surface chemistry control for origin of prebiotic peptides. Nature communications 8(1) (2017) 1-9.

DOI: 10.1038/s41467-017-02248-y

Google Scholar

[71] N.G. Holm, G. Ertem, J.P. Ferris, The binding and reactions of nucleotides and polynucleotides on iron oxide hydroxide polymorphs. Origins of Life and Evolution of the Biosphere 23(3) 195-215 (1993).

DOI: 10.1007/bf01581839

Google Scholar

[72] T. Bullard, J. Freudenthal, S. Avagyan, B. Kahr, Test of Cairns-Smith's crystals-as-genes, hypothesis. Faraday Discussions, 136 (2007) 231-245.

DOI: 10.1039/b616612c

Google Scholar

[73] H. Lahiri, S. Mishra, R. Mukhopadhyay, Nanoscale Nucleic Acid Recognition at the Solid–Liquid Interface Using Xeno Nucleic Acid Probes. Langmuir 35(27) (2018) 8875-8888.

DOI: 10.1021/acs.langmuir.8b02770

Google Scholar

[74] S. Yan, S. Huang, Direct Sequencing of Xeno-Nucleic Acids using Nanopore.  Biophysical Journal 116(3) (2019) 316a.

DOI: 10.1016/j.bpj.2018.11.1711

Google Scholar

[75] B. Sampaolese, A. Bergia, A. Scipioni, G. Zuccheri, M. Savino, B. Samorì, P. De Santis, Recognition of the DNA sequence by an inorganic crystal surface. Proceedings of the National Academy of Sciences 99(21) (2002) 13566-13570.

DOI: 10.1073/pnas.202471699

Google Scholar

[76] A. Scipioni, S. Pisano, A. Bergia, M. Savino, B. Samorì, P. De Santis, Recognition on the Nanoscale of a DNA Sequence by an Inorganic Crystal Surface. ChemBioChem 7(11) (2006) 1645-1648.

DOI: 10.1002/cbic.200600079

Google Scholar

[77] C.J. Murphy, E.B. Brauns, L. Gearheart, Quantum dots as inorganic DNA-binding proteins.  MRS Online Proceedings Library 452(1) (1996) 597-600.

DOI: 10.1557/proc-452-597

Google Scholar

[78] M. Numata, K. Sugiyasu, T. Hasegawa, S. Shinkai, Sol–gel reaction using DNA as a template: an attempt toward transcription of DNA into inorganic materials. Angewandte Chemie 116(25) (2004) 3341-3345.

DOI: 10.1002/ange.200454009

Google Scholar

[79] E. Stiakakis, Molecular engineering of model soft-matter systems using DNA. Weiche Materie. No. FZJ-2018-07739 (2018).

Google Scholar

[80] M. Siavashpouri, C.H. Wachauf, M.J. Zakhary, F. Praetorius, H. Dietz, Z. Dogic, Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nature materials 16(8) (2017) 849-856.

DOI: 10.1038/nmat4909

Google Scholar

[81] E. Kim, S. Agarwal, N. Kim, F.S. Hage, V. Leonardo, A. Gelmi, M.M. Stevens, Bioinspired Fabrication of DNA–Inorganic Hybrid Composites Using Synthetic DNA. ACS nano 13(3) (2019) 2888-2900.

DOI: 10.1021/acsnano.8b06492

Google Scholar

[82] Y. Cao, S. Che, DNA Condensed Phase and DNA-Inorganic Hybrid Mesostructured Materials. Advances in Bioinspired and Biomedical Materials 1 (2017) 49-79.

DOI: 10.1021/bk-2017-1252.ch004

Google Scholar

[83] A. Hards, C. Zhou, M. Seitz, C. Bräuchle, A. Zumbusch, Simultaneous AFM manipulation and fluorescence imaging of single DNA strands. ChemPhysChem 6(3) (2005) 534-540.

DOI: 10.1002/cphc.200400515

Google Scholar

[84] F. Long, C. Wang, M. Lü, F. Zhang, J. Sun, J. Hu, Optimizing single DNA molecules manipulation by AFM. Journal of microscopy 243(2) (2011) 118-123.

DOI: 10.1111/j.1365-2818.2010.03480.x

Google Scholar

[85] D. Na, W. Xinyan, Z. Chen, Z. Yi, H. Jun, Damage of DNA ends induced by mechanical force during AFM nano-manipulation. 《 核技术》(英文版) 24(1) (2013) 10301-010301.

Google Scholar

[86] Z. Chen, D. Na, D. Bin, Z. Yi, Z. Donghua, H. Jun, Mechanical force-induced DNA damage during AFM single-molecule manipulation. 《 核技术》(英文版) 24(3) (2013) 30504-030504.

Google Scholar

[87] R. Proksch, M.B. Viani, J. Cleveland, C. Callahan, Closed loop manipulation and measurement of single DNA molecules using an AFM. Biophysical Journal, 84(2) (2003) 471A.

Google Scholar

[88] C. Hoyer, S. Monajembashi, K.O. Greulich, Laser manipulation and UV induced single molecule reactions of individual DNA molecules. Journal of biotechnology 52(2) (1996) 65-73.

DOI: 10.1016/s0168-1656(96)01593-3

Google Scholar

[89] Y. Matsuzawa, K. Hirano, A. Mizuno, M. Ichikawa, K. Yoshikawa, Geometric manipulation of DNA molecules with a laser. Applied Physics Letters 81(18) (2002) 3494-3496.

DOI: 10.1063/1.1516263

Google Scholar

[90] K. Hirano, Y. Baba, Y. Matsuzawa, A. Mizuno, Manipulation of single coiled DNA molecules by laser clustering of microparticles. Applied Physics Letters 80(3) (2002) 515-517.

DOI: 10.1063/1.1435803

Google Scholar

[91] S. Fujii, K. Kobayashi, K. Kanaizuka, T. Okamoto, S. Toyabe, E. Muneyuki, M.A. Haga, Manipulation of single DNA using a micronanobubble formed by local laser heating on a Au-coated surface. Chemistry letters, 39(2) (2010) 92-93.

DOI: 10.1246/cl.2010.92

Google Scholar

[92] F. Garwe, A. Csáki, G. Maubach, A. Steinbrück, A. Weise, K. König, W. Fritzsche, Laser pulse energy conversion on sequence-specifically bound metal nanoparticles and its application for DNA manipulation. Medical Laser Application, 20(3) (2005) 201-206.

DOI: 10.1016/j.mla.2005.07.007

Google Scholar

[93] S. Kron, J. Graham, S. Chu, P. Matsudaira, Manipulation of single DNA-molecules by laser trapping microscopy. Biophysical Journal 64(2) (1993) A10.

Google Scholar

[94] F. Arai, K. Yoshikawa, A. Ichikawa, H. Maruyama, T. Fukuda, Manipulation of DNA Molecules by Laser Trapped Thermoreversible Hydrogel. Nippon Kikai Gakkai Ronbunshu C Hen (Transactions of the Japan Society of Mechanical Engineers Part C) (Japan), 18(2) (2006) 464-470.

DOI: 10.1299/kikaic.72.464

Google Scholar

[95] S. Fujioka, T. Ooi and M. Nakao, In-situ single DNA manipulation with 20 nm electron-beam-deposited probe, Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 3 (2001) 2949-2952.

DOI: 10.1109/iembs.2001.1017410

Google Scholar

[96] M.A. Rad, K. Ibrahim, Fabrication of 20 nm deep silicon dioxide channel using electron beam lithography for manipulation of DNA molecules,, 2012 International Conference on Enabling Science and Nanotechnology (2012) 1-2.

DOI: 10.1109/escinano.2012.6149651

Google Scholar

[97] M.F. Zäh, S. Lutzmann, Modelling and simulation of electron beam melting. Production Engineering 4(1) (2010) 15-23.

DOI: 10.1007/s11740-009-0197-6

Google Scholar

[98] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science & Technology 28(1) (2012) 1-14.

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[99] A.K. Ravi, A. Deshpande, K.H. Hsu, An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing.  Journal of Manufacturing Processes 24 (2016) 179-185.

DOI: 10.1016/j.jmapro.2016.08.007

Google Scholar

[100] D. Drummer, M. Drexler, K. Wudy, Density of laser molten polymer parts as function of powder coating process during additive manufacturing. Procedia Engineering 102 (2015) 1908-1917.

DOI: 10.1016/j.proeng.2015.01.331

Google Scholar

[101] C.A. Chatham, M.J. Bortner, B.N. Johnson, T.E. Long, C.B. Williams, Predicting mechanical property plateau in laser polymer powder bed fusion additive manufacturing via the critical coalescence ratio, Materials and Design (2021) 109474.

DOI: 10.1016/j.matdes.2021.109474

Google Scholar

[102] Y.H. Chueh, X. Zhang, J.C.R. Ke, Q. Li, C. Wei, L. Li, Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion, Additive Manufacturing 36 (2020) 101465.

DOI: 10.1016/j.addma.2020.101465

Google Scholar

[103] S.S. Kelkar, T.M. Reineke, Theranostics: combining imaging and therapy, Bioconjugate Chemistry 22(10) (2011) 1879-1903.

DOI: 10.1021/bc200151q

Google Scholar

[104] S. Del Vecchio, A. Zannetti, R. Fonti, L. Pace, M. Salvatore, Nuclear imaging in cancer theranostics, Quarterly Journal of Nuclear Medicine and Molecular Imaging 51(2) (2007) 152-163.

Google Scholar

[105] T. Krasia-Christoforou, T.K. Georgiou, Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy, Journal of Materials Chemistry B 1(24) (2013) 3002-3025.

DOI: 10.1039/c3tb20191k

Google Scholar

[106] S. Tonnemacher, M. Eltsov, B. Jakob, Correlative light and electron microscopy (CLEM) analysis of nuclear reorganization induced by clustered DNA damage upon charged particle irradiation, International Journal of Molecular Sciences 21(6) (2020) (1911).

DOI: 10.3390/ijms21061911

Google Scholar

[107] O.V. Gradov, Novel Perspectives for CLEM Techniques in Multiparametric Morphology Protocols, International Journal of Biomedicine 9(1) (2019) 35-39.

DOI: 10.21103/ijbm.9.suppl_1.p39

Google Scholar

[108] S.H. Yun, S.W. Lee, H.N. Koo, G.H. Kim, Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae), Radiation Physics and Chemistry 96 (2014) 44-49.

DOI: 10.1016/j.radphyschem.2013.08.008

Google Scholar

[109] S. Todoriki, M. Hasan, A. Miyanoshita, T. Imamura, T. Hayashi, Assessment of electron beam-induced DNA damage in larvae of chestnut weevil, Curculio sikkimensis (Heller) (Coleoptera: Curculionidae) using comet assay, Radiation Physics and Chemistry 75(2) (2006) 292-296.

DOI: 10.1016/j.radphyschem.2005.08.001

Google Scholar

[110] A. Cole, W.G. Cooper, F. Shonka, P.M. Corry, R.M. Humphrey, A.T. Ansevin, DNA scission in hamster cells and isolated nuclei studied by low-voltage electron beam irradiation, Radiation Research, 60(1) (1974) 1-33.

DOI: 10.2307/3574002

Google Scholar

[111] R. Norarat, N. Semsang, S. Anuntalabhochai, L.D. Yu, Very low-energy and low-fluence ion beam bombardment of naked plasmid DNA, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(8-9) (2009) 1650-1653.

DOI: 10.1016/j.nimb.2009.01.095

Google Scholar

[112] M.D. Sevilla, D. Becker, A. Kumar, A. Adhikary, Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure, Radiation Physics and Chemistry 128 (2016) 60-74.

DOI: 10.1016/j.radphyschem.2016.04.022

Google Scholar

[113] J. Jiang, X. Li, W.C. Mak, D. Trau, Integrated direct DNA/protein patterning and microfabrication by focused ion beam milling, Advanced Materials, 20(9) (2008), 1636-1643.

DOI: 10.1002/adma.200701415

Google Scholar

[114] S. Okayama, K. Ohta, R. Higashi, K.I. Nakamura, Correlative light and electron microscopic observation of mitochondrial DNA in mammalian cells by using focused-ion beam scanning electron microscopy, Microscopy 63(1) (2014) i35.

DOI: 10.1093/jmicro/dfu079

Google Scholar

[115] M. Tang, Z. Yu, Bioeffects of low energy ion beam implantation: DNA damage, mutation and gene transfer, Plasma Science and Technology 9(4) (2007) 513-518.

DOI: 10.1088/1009-0630/9/4/29

Google Scholar

[116] Y.Hirata, K.Ozaki, H. Maruo, T. Ohji, Micro-Discharge and Melting Phenomena with thin Electrode in SEM Vacuum Environment, Proceedings of ICHMT – International Symposium on Molecular and Micro-scale Heat Transfer in Materials Processing and Other Applications 2 (1996) 118-126.

Google Scholar

[117] H. Maruo, Y. Hirata, K. Ozaki, Melting phenomena by micro-discharge, Quarterly Journal of the Japan Welding Society 13 (1995) 46-53.

Google Scholar

[118] Hiroshi Maruo, Yoshinori Hirata, Kimihiro Ozaki, Phenomena of micro-discharge across the gap of sub-micrometer, , Quarterly Journal of the Japan Welding Society 12 (1994) 477-484.

DOI: 10.2207/qjjws.12.477

Google Scholar

[119] X. Yuan, J. Sheng, X. Li, J. Li, Z. Cai, Phase Forming and Development of Multi-Phase Polymer Systems during Melting-SEM Pattern Analysis of Polystyrene/Poly(cis-butadiene) Rubber Immiscible Blends, Acta Polymerica Sinica 2 (2001) 219-223.

Google Scholar

[120] A. Meller, L. Nivon, D. Branton, Voltage-driven DNA translocations through a nanopore, Physical Review Letters 86(15) (2001) 3435.

DOI: 10.1103/physrevlett.86.3435

Google Scholar

[121] J. B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, G. Timp, The electromechanics of DNA in a synthetic nanopore, Biophysical Journal 90(3) (2006) 1098-1106.

DOI: 10.1529/biophysj.105.070672

Google Scholar

[122] A. Aksimentiev, Deciphering ionic current signatures of DNA transport through a nanopore, Nanoscale 2(4) (2010) 468-483.

DOI: 10.1039/b9nr00275h

Google Scholar

[123] A.F. Sauer-Budge, J.A. Nyamwanda, D.K. Lubensky, D. Branton, Unzipping kinetics of double-stranded DNA in a nanopore, Physical Review Letters 90(23) (2003) 238101.

DOI: 10.1103/physrevlett.90.238101

Google Scholar

[124] T. Ding, J. Yang, V. Pan, N. Zhao, Z. Lu, Y. Ke, C. Zhang, DNA nanotechnology assisted nanopore-based analysis, Nucleic Acids Research 48(6) (2020) 2791-2806.

DOI: 10.1093/nar/gkaa095

Google Scholar

[125] A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.F. Joanny, C. Dekker, Fast DNA translocation through a solid-state nanopore, Nano Letters 5(7) (2005) 1193-1197.

DOI: 10.1021/nl048030d

Google Scholar

[126] D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Slowing DNA translocation in a solid-state nanopore, Nano Letters 5(9) (2005) 1734-1737.

DOI: 10.1021/nl051063o

Google Scholar

[127] J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope, Nature Materials 2(9) (2003) 611-615.

DOI: 10.1038/nmat965

Google Scholar

[128] D. Fologea, M. Gershow, B. Ledden, D.S. McNabb, J.A. Golovchenko, J. Li, Detecting single stranded DNA with a solid state nanopore, Nano Letters 5(10) , (2005) 1905-1909.

DOI: 10.1021/nl051199m

Google Scholar

[129] L. Liu, H.C. Wu, DNA‐Based Nanopore Sensing. Angewandte Chemie International Edition 55(49) (2016) 15216-15222.

DOI: 10.1002/anie.201604405

Google Scholar

[130] U.F. Keyser, B.N. Koeleman, S. Van Dorp, D. Krapf, R.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Direct force measurements on DNA in a solid-state nanopore, Nature Physics 2(7) (2006) 473-477.

DOI: 10.1038/nphys344

Google Scholar

[131] J. Clarke, H.C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology 4(4) (2009) 265-270.

DOI: 10.1038/nnano.2009.12

Google Scholar

[132] D. Stoddart, A.J. Heron, E. Mikhailova, G. Maglia, H. Bayley, Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore, Proceedings of the National Academy of Sciences 106(19) (2009) 7702-7707.

DOI: 10.1073/pnas.0901054106

Google Scholar

[133] J.T. Simpson, R.E. Workman, P.C. Zuzarte, M. David, L.J. Dursi, W. Timp, Detecting DNA cytosine methylation using nanopore sequencing, Nature Methods 14(4) (2017) 407-410.

DOI: 10.1038/nmeth.4184

Google Scholar

[134] E.V. Wallace, D. Stoddart, A.J. Heron, E. Mikhailova, G. Maglia, T.J. Donohoe, H. Bayley, Identification of epigenetic DNA modifications with a protein nanopore, Chemical Communications 46(43) (2010) 8195-8197.

DOI: 10.1039/c0cc02864a

Google Scholar

[135] A.C. Rand, M. Jain, J.M. Eizenga, A. Musselman-Brown, H.E. Olsen, M. Akeson, B. Paten, Mapping DNA methylation with high-throughput nanopore sequencing, Nature Methods 14(4) (2017) 411-413.

DOI: 10.1038/nmeth.4189

Google Scholar

[136] U. Mirsaidov, W. Timp, X. Zou, V. Dimitrov, K. Schulten, A.P. Feinberg, G. Timp, Nanoelectromechanics of methylated DNA in a synthetic nanopore, Biophysical Journal 96(4) (2009) 32-34.

DOI: 10.1016/j.bpj.2008.12.3760

Google Scholar

[137] P. Agrawal, J.G. Reifenberger, K.D. Dorfman, 3D Printing-Enabled DNA Extraction for Long-Read Genomics, ACS Omega 5(33) (2020) 20817-20824.

DOI: 10.1021/acsomega.0c01912

Google Scholar

[138] J. Müller, A.C. Jäkel, D. Schwarz, L. Aufinger, F.C. Simmel, Programming Diffusion and Localization of DNA Signals in 3D‐Printed DNA‐Functionalized Hydrogels, Small 16(31) (2020) 2001815.

DOI: 10.1002/smll.202001815

Google Scholar

[139] D. Yee, S. Krishnamoorthy, R.H. Grubbs, S.  Hetts, J.R. Greer, Genomic DNA functionalized 3D printed architected materials for drug capture. In: 257th ACS National Meeting & Exposition, 31 March - 4 April 2019, Orlando, FL. Information on: https://resolver.caltech.edu/CaltechAUTHORS:20190318-074827498.

Google Scholar

[140] D. Yee, M. Schulz, C. Blumenfeld, R. Grubbs, J.R. Greer, (2018) Genomic DNA functionalized 3D printed materials for drug capture. In: 255th American Chemical Society National Meeting & Exposition, 18-22 March 2018, New Orleans, LA.  Information on https://resolver.caltech.edu/CaltechAUTHORS:20180413-160844730.

Google Scholar

[141] R. Vinayak, A.C. van der Laan, R. Brill, K. Otteson, A. Andrus, E. Kuyl-Yeheskiely, J.H. van Boom, Automated chemical synthesis of PNA and PNA-DNA chimera on a nucleic acid synthesizer, Nucleosides, Nucleotides and Nucleic Acids 16(7-9) (1997) 1653-1656.

DOI: 10.1080/07328319708006248

Google Scholar

[142] D. Pokharel, S. Fueangfung, M. Zhang, S. Fang, Peptide and peptide nucleic acid syntheses using a DNA/RNA synthesizer, Peptide Science 102(6) (2014) 487-493.

DOI: 10.1002/bip.22574

Google Scholar

[143] S. Ikeda, H. Sugiyama, I. Saito, Synthesis of puromycin-nucleic acid hybrids by DNA automated-synthesizer. Abstracts of Papers of the American Chemical Society 214 (1997), 33-ORGN.

Google Scholar

[144] J.S. Roach, S. Rayner, L.D. Mayfield, D.R. Corey, H.R. Garner, Development of a high-throughput peptide nucleic acid synthesizer. Abstracts of Papers of the American Chemical Society 219 (2000) U185-U185.

Google Scholar

[145] R. Joshi, D. Jha, W. Su, J. Engelmann, Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer, Journal of Peptide Science 17(1) (2011) 8-13.

DOI: 10.1002/psc.1305

Google Scholar

[146] S. Becker, C. Schneider, A. Crisp, T. Carell, Non-canonical nucleosides and chemistry of the emergence of life, Nature Communications 9(1) (2018) 1-4.

DOI: 10.1038/s41467-018-07222-w

Google Scholar

[147] Ö. Güllü, M. Çankaya, Ö. Barış, M. Biber, H. Özdemir, M. Güllüce, A. Türüt, DNA-based organic-on-inorganic semiconductor Schottky structures, Applied Surface Science 254(16) (2008) 5175-5180.

DOI: 10.1016/j.apsusc.2008.02.019

Google Scholar

[148] M. Kapelewski, Synthetic, inorganic DNA as a means to high-density molecular electronics, Young Scientists Journal 2(8) (2009) 15.

DOI: 10.4103/0974-6102.68739

Google Scholar

[149] S. Okur, F. Yakuphanoglu, M. Ozsoz, P.K. Kadayifcilar, Electrical and intrface properties of Au/DNA/n-Si organic-on-inorganic structures, Microelectronic Engineering 86(11) (2009) 2305-2311.

DOI: 10.1016/j.mee.2009.04.017

Google Scholar

[150] U. Becker, K.M. Rosso, J.M.F Hochella, The proximity effect on semiconducting mineral surfaces: A new aspect of mineral surface reactivity and surface complexation theory? Geochimica et Cosmochimica Acta 65(16) (2001) 2641-2649.

DOI: 10.1016/s0016-7037(01)00624-x

Google Scholar

[151] X. Shui, C.C. Sines, L. McFail-Isom, D. VanDerveer, L.D. Williams, Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations, Biochemistry 37(48) (1998) 16877-16887.

DOI: 10.1021/bi982063o

Google Scholar

[152] E.I. Hamilton, M.J. Minski, Comments upon the inorganic constituents present in DNA and RNA, Science of the Total Environment 1(1) (1972) 104-107.

DOI: 10.1016/0048-9697(72)90017-4

Google Scholar

[153] G. Wei, R. Dong, X. Gao, D. Wang, L. Feng, S. Song, S. Dong, A. Song, J. Hao, Multiple DNA architectures with the participation of inorganic metal ions, ACS Applied Materials and Interfaces 6(17) (2014) 14919-14922.

DOI: 10.1021/am5022667

Google Scholar

[154] R. Ott, R. Krämer, DNA hydrolysis by inorganic catalysts, Applied Microbiology and Biotechnology 52(6) (1999) 761-767.

DOI: 10.1007/s002530051588

Google Scholar