Innovative Materials for Sustainable Construction

Article Preview

Abstract:

The construction industry has focused on trying to minimize and control the environmental impacts caused within the process of production and manufacture of fired bricks, for this reason the present research proposes five different alternative mixtures for the elaboration of ecological bricks, four of these based on soil-cement and one obtained through a geopolymerization process, using raw materials from the amazon region and the southern highlands of Ecuador, such as soil from the Centza mine (MC), sand from the Quiringue mine (MQ), organic correctors of husk rice (RH ), peanut shell (PS), natural gypsum (G) from the Malacatos sector and fired brick residues from the same sector. The raw materials were characterized (analysis: physicochemical and mineralogical); the soil-cement-based combinations used different percentages of substitution of organic correctors and gypsum, the optimum percentage of water and cement was determined through the compaction test and resistance to simple compression respectively, the samples were cured and tested at ages of 7, 14 and 28 days. In the geopolymerization process, an alkaline solution NaOH was used in different concentrations of molarity and solution contents, the specimens were cured at temperatures of 90 °C, 120 °C, 150 °C, 180 °C and 200 °C. The different combinations were subjected to indirect traction with the purpose to determine the optimal mixture and subsequent estimation of the compressive strength of bricks applying the Griffith criterion, the results were validated by the finite element method, obtaining strengths of 4 MPa in the combination soil-cement sand (SC_Ar1), in soil-cement rice husk (SC_RH2) and soil-cement peanut shell (SC_PS2) mixtures its resistance is 3 MPa, while in the soil-cement gypsum (SC_G4) mixture the resistance is 6.90 MPa and finally the resistance in geopolymeric mixture (GBW) is 13.75 MPa; In this way, the optimal combinations comply and increase the resistance to simple compression of bricks by 35% the SC_Ar1 mixture, 130% in the SC_G mixture with respect to the spanish standard and 129% the GBW mixture with respect to the ecuadorian standard.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1023)

Pages:

155-162

Citation:

Online since:

March 2021

Export:

Price:

* - Corresponding Author

[1] L.P. Barros, F.A. Imhoff, Resistencia sísmica del suelo-cemento postensado en construcciones de baja complejidad geométrica, Rev. La Constr. 9 (2010) 26–38.

DOI: 10.4067/s0718-915x2010000200004

Google Scholar

[2] A. Jiménez Rivero, A. De Guzmán Báez, J.G. Navarro, New composite gypsum plaster - Ground waste rubber coming from pipe foam insulation, Constr. Build. Mater. 55 (2014) 146–152.

DOI: 10.1016/j.conbuildmat.2014.01.027

Google Scholar

[3] C. Alvarado, Y. Cañizares, Modelo de gestión para piladora comunitaria, Escuela Superior Politécnica del Litoral, (2016).

Google Scholar

[4] J. Davidovits, Geopolymer Chemistry and Applications, (2008).

Google Scholar

[5] A. Zúñiga, Ciencia e ingeniería de nuevos materiales en la fabricación mejorados tecnologicamente, Universidad Politécnica de Madrid, (2018).

DOI: 10.20868/upm.thesis.52643

Google Scholar

[6] V.J. García, C.O. Márquez, A.R. Zúñiga-Suárez, B.C. Zuñiga-Torres, L.J. Villalta-Granda, Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights, Int. J. Concr. Struct. Mater. 11 (2017) 343–363.

DOI: 10.1007/s40069-017-0194-7

Google Scholar

[7] A.A. Griffits, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. A221 (1921) 163-198.

DOI: 10.1098/rsta.1921.0006

Google Scholar

[8] UNE 41410, Bloques de tierra comprimida para muros y tabIques/Definiciones, especificaciones y métodos de ensayo, Aenor. (2008) 28. doi:M 55496:(2008).

Google Scholar

[9] N. INEN 297, Ladrillos cerámicos. Requisitos, Inst. Ecuatoriano Norm. 297 (1978) 7.

Google Scholar

[10] R. Scavuzzo, Use of the Harvard Miniature Apparatus for Obtaining Moisture-Unit Weight Relationships of Soils-GR-84-14, Eng. Res. Cent. (1984). https://www.usbr.gov/tsc/techreferences/research/GR8414.pdf.

Google Scholar

[11] ABNT-Associação Brasileira de Normas Técnicas-NBR 12023, Solo-cimento - Ensaio de compactação, NBR12023. (1992).

Google Scholar

[12] N. INEN 292, Ladrillo cerámicos muestreo, Inst. Ecuatoriano Norm. (1977) 1–6.

Google Scholar

[13] A.L. Murmu, A. Patel, Towards sustainable bricks production: An overview, Constr. Build. Mater. 165 (2018) 112–125.

DOI: 10.1016/j.conbuildmat.2018.01.038

Google Scholar

[14] X. Hao, B.C. Ball, J.L.B. Culley, M.R. Carter, G.W. Parkin, Chapter 57: Soil density and porosity, Soil Sampl. Methods Anal. (2006) 743–760.

Google Scholar

[15] J. Arratibel, Filler de aluminio para la elaboración de ladrillos puzolánicos sin cocción, Universidad Pública de Navarra, (2011).

Google Scholar

[16] O.S. Sore, A. Messan, E. Prud, G. Escadeillas, F. Tsobnang, Synthesis and characterization of geopolymer binders based on local materials from Burkina Faso – Metakaolin and rice husk ash, Constr. Build. Mater. 124 (2016) 301–311.

DOI: 10.1016/j.conbuildmat.2016.07.102

Google Scholar

[17] ABNT-Associação Brasileira de Normas Técnicas-NBR 12253, Solo-cimento-Dosagem para emprego como camada de pavimento, 30 (1992) 819–822.

Google Scholar

[18] O.A. Fadele, O. Ata, Case Studies in Construction Materials Water absorption properties of sawdust lignin stabilised compressed laterite bricks, Case Stud. Constr. Mater. 9 (2018) e00187.

DOI: 10.1016/j.cscm.2018.e00187

Google Scholar