Characterization and Reduction of Defects in 4H-SiC Substrate and Homo-Epitaxial Wafer

Article Preview

Abstract:

4H-SiC substrates and homo-epitaxial layers were obtained using the traditional methods of physical vapor transport and chemical vapor deposition. Defect morphology has been studied using both Synchrotron White Beam X-ray Topography and Monochromatic Beam X-ray Topography. Molten KOH etching method was adopted to further investigate the dislocation behavior mechanisms. Deflected dislocations were observed at the periphery regions in both substrate and epitaxial wafers. 3C polytypes and half loop arrays were observed in the 4H-SiC epitaxial wafer. It is also found that the majority of basal plane dislocations are converted to threading edge dislocations in the epitaxial wafer samples. The proportion of BPD to TED conversion depends on the surface step morphology and growth mode in epitaxial growth which in turn depends on the C/Si ratio. By the optimization of etching time prior to epitaxy and C/Si ratio, high-quality epitaxial wafers with extremely low basal plane dislocations densities (<0.1 cm-2) was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

387-392

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] F. La Via, M. Camarda, A. La Magna, Appl. Phys. Rev. 1 (3) (2014) 031301.

Google Scholar

[2] H. Song, T. Sudarshan, J. Cryst. Growth. 371 (2013) 94-101.

Google Scholar

[3] C. Ota, J. Nishio, K. Takao, and T. Shinohe, Mater. Sci. Forum. 778-780 (2014) 851-854.

Google Scholar

[4] J. Zhang, D.M. Hansen, V.M. Torres, B. Thomas, G. Chung, H. Makoto, I. Manning, J. Quast, C. Whiteley, E.K. Sanchez, S. Mueller, M.J. Loboda, H. Wang, F. Wu, M. Dudley, Mater. Res. Soc. Symp. Proc. 1693 (2014).

DOI: 10.1557/opl.2014.579

Google Scholar

[5] T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, K. Arai, J. Cryst. Growth. 271 (2004) 1-7.

Google Scholar

[6] H. Song, T. Rana, T. Sudarshan, J. Cryst. Growth. 320 (2011) 95-102.

Google Scholar

[7] B. L. VanMil, R. E. Stahlbush, R. L. Myers-Ward, K.-K. Lew, C. R. Eddy, Jr., and D. K. Gaskill, J.Vac. Sci. Technol. B. 26 (2008) 1504-1507.

DOI: 10.1116/1.2918317

Google Scholar

[8] D. Lee, H. Lee, B. Bae, H. Lee, S. Lee, M. Park, W. Lee, I. Yeo, T. Eun, M. Chun, Mater. Sci. Forum. 778-780 (2014) 26-30.

DOI: 10.4028/www.scientific.net/msf.778-780.26

Google Scholar

[9] L. Zhao, H. Wu, J. Cryst. Growth. 507 (2019) 109-112.

Google Scholar

[10] B. Raghothamachar, M. Dudley, G. Dhanaraj, Handbook of Crystal Growth, Springer. (2010) 1425-1451.

DOI: 10.1007/978-3-540-74761-1_42

Google Scholar

[11] N. Zhang, Y. Chen, Y. Zhang, M. Dudley, and R. E. Stahlbush, Appl. Phys. Lett. 94 (2009) 122108(1)- 122108(3).

DOI: 10.1063/1.3105944

Google Scholar

[12] H. Wang, F. Wu, M. Dudley, B. Raghothamachar, G. Chung, J. Zhang, B. Thomas, E. K. Sanchez, S. G. Mueller, D. Hansen and M. J. Loboda, Mater. Sci. Forum. 778-780 (2014) 328-331.

DOI: 10.4028/www.scientific.net/msf.778-780.328

Google Scholar

[13] H. Tsuchida, I. Kamata, K. Kojima, K. Momose, M. Odawara, T. Takahashi, Y. Ishida and K. Matsuzawa, Mater. Res. Soc. Symp. Proc. (2008) 1069.

Google Scholar

[14] R. E. Stahlbush, B. L. VanMil, R. L. Myers-Ward, K-K. Lew, D. K. Gaskill, C. R. Eddy, Appl. Phys. Lett. 94 (2009) 041916(1)-041916(3).

DOI: 10.1063/1.3070530

Google Scholar

[15] Y. Daigo, S. Ishii, T. Kobayashi, Jpn. J. Appl. Phys. 58 (2019) SBBK06(1)- SBBK06(6).

Google Scholar

[16] H. Fujiwara, K. Danno, T. Kimoto, J. Cryst. Growth. 281 (2005) 370–376.

Google Scholar